1.College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
2.Optoelectronics and Measurement Techniques, University of Oulu, Oulu FI-90014, Finland
Igor Meglinski (i.meglinski@aston.ac.uk)
Alexander Bykov (alexander.bykov@oulu.fi)
Published:31 October 2024,
Published Online:26 August 2024,
Received:17 January 2024,
Revised:16 July 2024,
Accepted:04 August 2024
Scan QR Code
Meglinski, I. et al. Phase preservation of orbital angular momentum of light in multiple scattering environment. Light: Science & Applications, 13, 2263-2275 (2024).
Meglinski, I. et al. Phase preservation of orbital angular momentum of light in multiple scattering environment. Light: Science & Applications, 13, 2263-2275 (2024). DOI: 10.1038/s41377-024-01562-7.
Recent advancements in wavefront shaping techniques have facilitated the study of complex structured light's propagation with orbital angular momentum (OAM) within various media. The introduction of spiral phase modulation to the Laguerre–Gaussian (LG) beam during its paraxial propagation is facilitated by the negative gradient of the medium's refractive index change over time
leading to a notable increase in the rate of phase twist
effectively observed as phase retardation of the OAM. This approach attains remarkable sensitivity to even the slightest variations in the medium's refractive index (~10
−6
). The phase memory of OAM is revealed as the ability of twisted light to preserve the initial helical phase even propagating through the turbid tissue-like multiple scattering medium. The results confirm fascinating opportunities for exploiting OAM light in biomedical applications
e.g. such as non-invasive trans-cutaneous glucose diagnosis and optical communication through biological tissues and other optically dense media.
Mishchenko, M. I., Travis, L. D.&Lacis, A. A (eds)Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering(Cambridge University, 2006).
Torres, J. P.&Torner, L (eds)Twisted Photons: Applications of Light with Orbital Angular Momentum(Wiley-VCH, 2011).
Rubinsztein-Dunlop, H. et al. Roadmap on structured light.J. Opt.19, 013001 (2017)..
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singu.Light Sci. Appl.8, 90 (2019)..
Rego, L. et al. Generation of extreme-ultraviolet beams with time-varying orbital angular momentum.Science364, eaaw9486 (2019)..
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat. Photonics6, 488–496 (2012)..
Zhu, R. X. et al. Optical tweezers in studies of red blood cells.Cells9, 545 (2020)..
Padgett, M.&Bowman, R. Tweezers with a twist.Nat. Photonics5, 343–348 (2011)..
Weng, Y.&Pan, Z. Q. Orbital angular momentum based sensing and their applications: a review.J. Lightwave Technol.41, 2007–2016 (2023)..
Bustamante, C. J. et al. Optical tweezers in single-molecule biophysics.Nat. Rev. Methods Prim.1, 25 (2021)..
Avsievich, T. et al. The advancement of blood cell research by optical tweezers.Rev. Phys.5, 100043 (2020)..
Ritsch-Marte, M. Orbital angular momentum light in microscopy.Philos. Trans. A Math Phys. Eng. Sci.375, 20150437 (2017)..
Yang, H. et al. A perspective on twisted light from on-chip devices.APL Photonics6, 110901 (2021)..
Perez, N. et al. Conservation of orbital angular momentum and polarization through biological waveguides.Sci. Rep.12, 14144 (2022)..
Chen, J., Wan, C. H.&Zhan, Q. W. Engineering photonic angular momentum with structured light: a review.Adv. Photonics3, 064001 (2021)..
Milione, G. et al. Higher-order poincaré sphere, stokes parameters, and the angular momentum of light.Phys. Rev. Lett.107, 053601 (2011)..
Milione, G. et al. Higher order pancharatnam-berry phase and the angular momentum of light.Phys. Rev. Lett.108, 190401 (2012)..
Shi, L. Y. et al. Transmission in near-infrared optical windows for deep brain imaging.J. Biophotonics9, 38–43 (2016)..
Shi, L. Y. et al. Propagation of Gaussian and Laguerre–Gaussian vortex beams through mouse brain tissue.J. Biophotonics10, 1756–1760 (2017)..
Wang, W. B. et al. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media.Opt. Lett.41, 2069–2072 (2016)..
Mamani, S. et al. OAM transmission of polarized multipole laser beams in rat cerebellum tissue.Opt. Commun.532, 129241 (2023)..
Mamani, S. et al. Transmission of classically entangled beams through mouse brain tissue.J. Biophotonics11, e201800096 (2018)..
Shi, L. Y&Alfano, R. R. (eds)Deep Imaging in Tissue and Biomedical Materials: Using Linear and Nonlinear Optical Methods(Jenny Stanford Publishing, 2017).
Mamani, S. et al. Majorana vortex photons a form of entangled photons propagation through brain tissue.J. Biophotonics12, e201900036 (2019)..
Mamani, S., Ahmar, H. E.&Alfano, R. R. Orbital and spin angular momentum Raman scattering of methanol, benzene, hexane, and carbon tetrachloride liquids.Optik267, 169727 (2022)..
Fatkhiev, D. M. et al. Recent advances in generation and detection of orbital angular momentum optical beams—a review.Sensors21, 4988 (2021)..
Guo, M. X. et al. Generation, topological charge, and orbital angular momentum of off-axis double vortex beams.Photonics10, 368 (2023)..
Allen, L., Padgett, M. J.&Babiker, M. The orbital angular momentum of light.Prog. Opt.39, 291–372 (1999)..
Rosales-Guzmán, C., Ndagano, B.&Forbes, A. A review of complex vector light fields and their applications.J. Opt.20, 123001 (2018)..
Berry, M. V.&McDonald, K. T. Exact and geometrical optics energy trajectories in twisted beams.J. Opt. A Pure Appl. Opt.10, 035005 (2008)..
Andrews, D. L.&Babiker, M (eds)The Angular Momentum of Light(Cambridge University Press, 2012).
Steelman, Z. A. et al. Light scattering methods for tissue diagnosis.Optica6, 479–489 (2019)..
Bustin, S. A.&Jellinger, K. A. Advances in molecular medicine: unravelling disease complexity and pioneering precision healthcare.Int. J. Mol. Sci.24, 14168 (2023)..
Bliokh, K. Y. et al. Photon trajectories, anomalous velocities and weak measurements: a classical interpretation.N. J. Phys.15, 073022 (2013)..
Lopushenko, I. et al. Exploring the evolution of circular polarized light backscattered from turbid tissue-like disperse medium utilizing generalized Monte Carlo modeling approach with a combined use of Jones and Stokes–Mueller formalisms.J. Biomed. Opt.29, 052913 (2023)..
Doronin, A. et al. Propagation of cylindrical vector laser beams in turbid tissue-like scattering media.Photonics6, 56 (2019)..
Meglinski, I. V. et al. Monte Carlo simulation of coherent effects in multiple scattering.Proc. R. Soc. A Math., Phys. Eng. Sci.461, 43–53 (2005)..
Cameron, B. D. et al. The use of polarized laser light through the eye for non-invasive glucose monitoring.Diab. Technol. Ther.1, 135–143 (1999)..
Purvinis, G., Cameron, B. D.&Altrogge, D. M. Noninvasive polarimetric-based glucose monitoring: an in vivo study.J. Diab. Sci. Technol.5, 380–387 (2011)..
Yoo, K. M., Liu, F.&Alfano, R. R. When does the diffusion approximation fail to describe photon transport in random media?Phys. Rev. Lett.64, 2647–2650 (1990)..
Gianani, I. et al. Transmission of vector vortex beams in dispersive media.Adv. Photonics2, 036003 (2020)..
de Aguiar, H. B., Gigan, S.&Brasselet, S. Polarization recovery through scattering media.Sci. Adv.3, e1600743 (2017)..
Bicout, D. et al. Depolarization of multiply scattered waves by spherical diffusers: influence of the size parameter.Phys. Rev. E49, 1767–1770 (1994)..
Jacques, S. L. Optical properties of biological tissues: a review.Phys. Med. Biol.58, R37–R61 (2013)..
Brandstötter, A. et al. Shaping the branched flow of light through disordered media.Proc. Natl. Acad. Sci. USA116, 13260–13265 (2019)..
Yılmaz, H. et al. Transverse localization of transmission eigenchannels.Nat. Photonics13, 352–358 (2019)..
Gul, B. et al. Cell refractive index: models, insights, applications and future perspectives.Photodiagnosis Photodyn. Ther.33, 102096 (2021)..
Berrocal,E. et al. Laser light scattering in turbid media Part Ⅰ: experimental and simulated results for the spatial intensity distribution.Opt. Express15, 10649–10665 (2007)..
Berrocal, E. et al. Laser light scattering in turbid media part Ⅱ: spatial and temporal analysis of individual scattering orders via Monte Carlo simulation.Opt. Express17, 13792–13809 (2009)..
Doronin, A., Yakovlev, V. V.&Bagnato, V. S. Photodynamic treatment of malignant melanoma with structured light: in silico Monte Carlo modeling.Biomed. Opt. Express15, 1682–1693 (2024)..
Park, Y., Depeursinge, C.&Popescu, G. Quantitative phase imaging in biomedicine.Nat. Biomed. Opt.12, 578–589 (2018)..
Yu, Z. P. et al. Wavefront shaping: a versatile tool to conquer multiple scattering in multidisciplinary fields.Innovation3, 100292 (2022)..
Ushenko, A. G. et al. Insights into polycrystalline microstructure of blood films with 3D Mueller matrix imaging approach.Sci. Rep.14, 13679 (2024)..
Kumar, P.&Nishchal, N. K. Modified Mach–Zehnder interferometer for determining the high-order topological charge of Laguerre–Gaussian vortex beams.J. Optical Soc. Am. A36, 1447–1455 (2019)..
Cui, S. W. et al. Determining topological charge based on an improved Fizeau interferometer.Opt. Express27, 12774–12779 (2019)..
Chandraprasad, T. B., Vayalamkuzhi, P.&Bhattacharya, S. Transform-based phase retrieval techniques from a single off-axis interferogram.Appl. Opt.60, 5523–5533 (2021)..
Jiménez Riobóo, R. et al. Concentration and temperature dependence of the refractive index of ethanol–water mixtures: influence of intermolecular interactions.Eur. Phys. J. E Soft Matter.30, 19–26 (2009)..
Wróbel, M. S. et al. Measurements of fundamental properties of homogeneous tissue phantoms.J. Biomed. Opt.20, 045004 (2015)..
Periyasamy, V.&Pramanik, M. Advances in Monte Carlo simulation for light propagation in tissue.IEEE Rev. Biomed. Eng.10, 122–135 (2017)..
Tinet, E., Avrillier, S.&Tualle, J. M. Fast semianalytical Monte Carlo simulation for time-resolved light propagation in turbid media.J. Optical Soc. Am. A13, 1903–1915 (1996)..
Churmakov, D. Y., Kuz'min, V. L.&Meglinskii, I. V. Application of the vector Monte Carlo method in polarization optical coherence tomography.Quantum Electron.36, 1009–1015 (2006)..
Berrocal, E. et al. Image transfer through the complex scattering turbid media.Laser Phys. Lett.3, 464–467 (2006)..
Bulygin, A., Meglinski, I.&Kistenev, Y. Non-paraxial effects in the laser beams sharply focused to skin revealed by unidirectional Helmholtz equation approximation.Photonics10, 907 (2023)..
Bar, C., Gkioulekas, I.&Levin, A. Efficient Monte Carlo simulation of spatiotemporal speckles and their correlations.Optica10, 1081–1092 (2023)..
Kuzmin, V. L.&Meglinski, I. V. Coherent multiple scattering effects and Monte Carlo method.J. Exp. Theor. Phys. Lett.79, 109–112 (2004)..
Kuzmin, V. L.&Meglinski, I. V. Coherent effects of multiple scattering for scalar and electromagnetic fields: Monte–Carlo simulation and Milne-like solutions.Opt. Commun.273, 307–310 (2007)..
Meglinski, I.&Kuzmin, V. L. Coherent backscattering of circularly polarized light from a disperse random medium.Prog. Electromagn. Res. M16, 47–61 (2011)..
Doronin, A. et al. Two electric field Monte Carlo models of coherent backscattering of polarized light.J. Optical Soc. Am. A31, 2394–2400 (2014)..
Mishchenko, M. I. Vector radiative transfer equation for arbitrarily shaped and arbitrarily oriented particles: a microphysical derivation from statistical electromagnetics.Appl. Opt.41, 7114–7134 (2002)..
Raković, M. J. et al. Light backscattering polarization patterns from turbid media: theory and experiment.Appl. Opt.38, 3399–3408 (1999)..
Tynes, H. H. et al. Monte Carlo and multicomponent approximation methods for vector radiative transfer by use of effective Mueller matrix calculations.Appl. Opt.40, 400–412 (2001)..
Doronin, A. et al. Propagation and scattering of vector light beam in turbid scattering medium. InProc of SPIE 8940, Optical Biopsy XII894006 (SPIE, California, 2014).
Doronin, A. et al. Assessment of twisted light localization in turbid tissue-like scattering media using 3D geometrical exploration. InProc SPIE PC12373, Optical Biopsy XXI: Toward Real-Time Spectroscopic Imaging and Diagnosis1237308 (SPIE, California, 2023).
Bruscaglioni, P. et al. A numerical procedure for calculating the effect of a turbid medium on the MTF of an optical system.J. Mod. Opt.38, 129–142 (1991)..
Otsu, N. A threshold selection method from gray-level histograms.IEEE Trans. Syst. Man Cybern.9, 62–66 (1979)..
Gonzalez, R. C., Woods, R. E.&Eddins, S. L. (eds)Digital Image Processing Using MATLAB(Pearson Prentice Hall, 2004).
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution