无数据
1.Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
2.IFN-CNR, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
3.Grupo de Investigación en Aplicaciones del Láser y Fotónica, Departamento de Física Aplicada, Universidad de Salamanca, E-37008 Salamanca, Spain
4.Unidad de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, Spain
5.Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
6.Department of Physics, Lund University, Lund, Sweden
Mauro Nisoli (mauro.nisoli@polimi.it)
Carlos Hernández-García (carloshergar@usal.es)
Rocío Borrego-Varillas (rocio.borregovarillas@cnr.it)
Received:14 March 2024,
Revised:31 July 2024,
Accepted:2024-08-04,
Published Online:20 August 2024,
Published:31 October 2024
Scan QR Code
Vismarra, F. et al. Isolated attosecond pulse generation in a semi-infinite gas cell driven by time-gated phase matching. Light: Science & Applications, 13, 2192-2200 (2024).
Vismarra, F. et al. Isolated attosecond pulse generation in a semi-infinite gas cell driven by time-gated phase matching. Light: Science & Applications, 13, 2192-2200 (2024). DOI: 10.1038/s41377-024-01564-5.
Isolated attosecond pulse (IAP) generation usually involves the use of short-medium gas cells operated at high pressures. In contrast
long-medium schemes at low pressures are commonly perceived as inherently unsuitable for IAP generation due to the nonlinear phenomena that challenge favourable phase-matching conditions. Here we provide clear experimental evidence on the generation of isolated extreme-ultraviolet attosecond pulses in a semi-infinite gas cell
demonstrating the use of extended-medium geometries for effective production of IAPs. To gain a deeper understanding we develop a simulation method for high-order harmonic generation (HHG)
which combines nonlinear propagation with macroscopic HHG solving the 3D time-dependent Schrödinger equation at the single-atom level. Our simulations reveal that the nonlinear spatio-temporal reshaping of the driving field
observed in the experiment as a bright plasma channel
acts as a self-regulating mechanism boosting the phase-matching conditions for the generation of IAPs.
Hentschel, M. et al. Attosecond metrology. Nature 414 , 509–513 (2001)..
Borrego-Varillas, R., Lucchini, M. & Nisoli, M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. Rep. Prog. Phys. 85 , 066401 (2022)..
Schultze, M. et al. Delay in photoemission. Science 328 , 1658–1662 (2010)..
Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346 , 336–339 (2014)..
Matselyukh, D. T. et al. Decoherence and revival in attosecond charge migration driven by non-adiabatic dynamics. Nat. Phys. 18 , 1206–1213 (2022)..
Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353 , 916–919 (2016)..
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4 , 595–601 (1987)..
Li, X. F. et al. Multiple-harmonic generation in rare gases at high laser intensity. Phys. Rev. A 39 , 5751 –5761 (1989)..
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292 , 1689–1692 (2001)..
Christov, I. P., Murnane, M. M. & Kapteyn, H. C. High-harmonic generation of attosecond pulses in the "single-cycle" regime. Phys. Rev. Lett. 78 , 1251–1254 (1997)..
Midorikawa, K. Progress on table-top isolated attosecond light sources. Nat. Photonics 16 , 267–278 (2022)..
Sola, I. J. et al. Controlling attosecond electron dynamics by phase-stabilized polarization gating. Nat. Phys. 2 , 319–322 (2006)..
Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314 , 443–446 (2006)..
Oishi, Y. et al. Generation of extreme ultraviolet continuum radiation driven by a sub-10-fs two-color field. Opt. Express 14 , 7230–7237 (2006)..
Mashiko, H. et al. Double optical gating of high-order harmonic generation w ith carrier-envelope phase stabilized lasers. Phys. Rev. Lett. 100 , 103906 (2008)..
Ferrari, F. et al. High-energy isolated attosecond pulses generated by above-saturation few-cycle fields. Nat. Photonics 4 , 875–879 (2010)..
Chen, M. C. et al. Generation of bright isolated attosecond soft X-ray pulses driven by multicycle midinfrared lasers. Proc. Natl Acad. Sci. USA 111 , E2361–E2367 (2014)..
Hernández-García, C. et al. Isolated broadband attosecond pulse generation with near- and mid-infrared driver pulses via time-gated phase matching. Opt. Express 25 , 11855–11866 (2017)..
Salières, P., L'Huillier, A. & Lewenstein, M. Coherence control of high-order harmonics. Phys. Rev. Lett. 74 , 3776–3779 (1995)..
Gaarde, M. B., Tate, J. L. & Schafer, K. J. Macroscopic aspects of attosecond pulse generation. J. Phys. B At. Mol. Opt. Phys. 41 , 132001 (2008)..
Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82 , 1668–1671 (1999)..
Weissenbilder, R. et al. How to optimize high-order harmonic generation in gases. Nat. Rev. Phys. 4 , 713–722 (2022)..
Appi, E. et al. Two phase-matching regimes in high-order harmonic generation. Opt. Express 31 , 31687–31697 (2023)..
Sobolev, E. et al. Terawatt-level three-stage pulse compression for all-attosecond pump-probe spectroscopy. arXiv https://doi.org/10.48550/arXiv.2404.18266 https://doi.org/10.48550/arXiv.2404.18266 (2024)..
Brichta, J. P. et al. Comparison and real-time monitoring of high-order harmonic generation in different sources. Phys. Rev. A 79 , 033404 (2009)..
Major, B. & Varjú, K. Extended model for optimizing high-order harmonic generation in absorbing gases. J. Phys. B: At. Mol. Opt. Phys. 54 , 224002 (2021)..
Sutherland, J. R. et al. High harmonic generation in a semi-infinite gas cell. Opt. Express 12 , 4430–4436 (2004)..
Steingrube, D. S. et al. Phase matching of high-order harmonics in a semi-infinite gas cell. Phys. Rev. A 80 , 043819 (2009)..
Tsai, M. S. et al. Nonlinear compression toward high-energy single-cycle pulses by cascaded focus and compression. Sci. Adv. 8 , eabo1945 (2022)..
Von Conta, A., Huppert, M. & Wörner, H. J. A table-top monochromator for tunable femtosecond XUV pulses generated in a semi-infinite gas cell: experiment and simulations. Rev. Sci. Instrum. 87 , 073102 (2016)..
Gaarde, M. B. & Schafer, K. J. Generating single attosecond pulses via spatial filtering. Opt. Lett. 31 , 3188–3190 (2006)..
Pazourek, R., Nagele, S. & Burgdörfer, J. Attosecond chronoscopy of photoemission. Rev. Mod. Phys. 87 , 765–802 (2015)..
Lucchini, M. et al. Ptychographic reconstruction of attosecond pulses. Opt. Express 23 , 29502–29513 (2015)..
Steingrube, D. S. et al. High-order harmonic generation directly from a filament. N. J. Phys. 13 , 043022 (2011)..
Haworth, C. A. et al. Half-cycle cutoffs in harmonic spectra and robust carrier-envelope phase retrieval. Nat. Phys. 3 , 52–57 (2007)..
Major, B. et al. High-order harmonic generation in a strongly overdriven regime. Phys. Rev. A 107 , 023514 (2023)..
Kretschmar, M. et al. Compact realization of all-attosecond pump-probe spectroscopy. Sci. Adv. 10 , eadk9605 (2024)..
Shim, B. et al. Generation of high-order harmonics and attosecond pulses in the water window via nonlinear propagation of a few-cycle laser pulse. Opt. Express 31 , 32488–32503 (2023)..
Rundquist, A. et al. Phase-matched generation of coherent soft X-rays. Science 280 , 1412–1415 (1998)..
Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336 , 1287–1291 (2012)..
Heyl, C. M. et al. Introduction to macroscopic power scaling principles for high-order harmonic generation. J. Phys. B At. Mol. Opt. Phys. 50 , 013001 (2017)..
Miranda, M. et al. Simultaneous compression and characterization of ultrashort laser pulses using chirped mirrors and glass wedges. Opt. Express 20 , 688–697 (2012)..
Itatani, J. et al. Attosecond streak camera. Phys. Rev. Lett. 88 , 173903 (2002)..
L'Huillier, A., Li, X. F. & Lompré, L. A. Propagation effects in high-order harmonic generation in rare gases. J. Opt. Soc. Am. B 7 , 527–536 (1990)..
Catoire, F. et al. Complex structure of spatially resolved high-order-harmonic spectra. Phys. Rev. A 94 , 063401 (2016)..
Priori, E. et al. Nonadiabatic three-dimensional model of high-order harmonic generation in the few-optical-cycle regime. Phys. Rev. A 61 , 063801 (2000)..
Hernández-García, C. et al. High-order harmonic propagation in gases within the discrete dipole approximation. Phys. Rev. A 82 , 033432 (20 10)..
Becker, A. et al. Total ionization rates and ion yields of atoms at nonperturbative laser intensities. Phys. Rev. A 64 , 023408 (2001)..
Pablos-Marín, J. M., Serrano, J. & Hernández-García, C. Simulating macroscopic high-order harmonic generation driven by structured laser beams using artificial intelligence. Comput. Phys. Commun. 291 , 108823 (2023)..
Couairon, A. et al. Practitioner's guide to laser pulse propagation modelsand simulation: Numerical implementation and practical usage of modern pulse propagation models. Eur. Phys. J. Spec. Top. 199 , 5–76 (2011)..
0
Views
39
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution