1.Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
2.School of Materials, Zhengzhou University of Aeronautics, Zhengzhou 450015, China
3.School of Physics, Harbin Institute of Technology, Harbin 150001, China
4.STMicroelectronics, 1Tanfield, Inverleith Row, Edinburgh EH3 5DA, UK
5.Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
Xianzhong Chen (x.chen@hw.ac.uk)
Published:31 October 2024,
Published Online:02 September 2024,
Received:12 April 2024,
Revised:26 July 2024,
Accepted:04 August 2024
Scan QR Code
Ansari, M. A. et al. Multifaceted control of focal points along an arbitrary 3D curved trajectory. Light: Science & Applications, 13, 2376-2388 (2024).
Ansari, M. A. et al. Multifaceted control of focal points along an arbitrary 3D curved trajectory. Light: Science & Applications, 13, 2376-2388 (2024). DOI: 10.1038/s41377-024-01565-4.
Metalenses can integrate the functionalities of multiple optical components thanks to the unprecedented capability of optical metasurfaces in light control. With the rapid development of optical metasurfaces
metalenses continue to evolve. Polarization and color play a very important role in understanding optics and serve as valuable tools for gaining insights into our world. Benefiting from the design flexibility of metasurfaces
we propose and experimentally demonstrate a super metalens that can realize multifaceted control of focal points along any 3D curved trajectory. The wavelengths and polarization states of all focal points are engineered in a desirable manner. The super metalens can simultaneously realize customized 3D positioning
polarization states
and wavelengths of focal points
which are experimentally demonstrated with incident wavelengths ranging from 501 to 700 nm. We further showcase the application of the developed super metalenses in 3D optical distance measurement. The compact nature of metasurfaces and unique properties of the proposed super metalenses hold promise to dramatically miniaturize and simplify the optical architecture for applications in optical metrology
imaging
detection
and security.
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Kim, I. et al. Holographic metasurface gas sensors for instantaneous visual alarms.Sci. Adv.7, eabe9943 (2021)..
Kim, I. et al. Stimuli-responsive dynamic metaholographic displays with designer liquid crystal modulators.Adv. Mater.32, 2004664 (2020)..
Ahmed, H. et al. Multichannel superposition of grafted perfect vortex beams.Adv. Mater.34, 2203044 (2022)..
Ahmed, H. et al. Dynamic control of hybrid grafted perfect vector vortex beams.Nat. Commun.14, 3915 (2023)..
Barulin, A. et al. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules.Nat. Commun.15, 26 (2024)..
Engelberg, J.&Levy, U. The advantages of metalenses over diffractive lenses.Nat. Commun.11, 1991 (2020)..
Xu, H. X. et al. Super-reflector enabled by non-interleaved spin-momentum-multiplexed metasurface.Light Sci. Appl.12, 78 (2023)..
Ni, P. N. et al. Spin-decoupling of vertical cavity surface-emitting lasers with complete phase modulation using on-chip integrated Jones matrix metasurfaces.Nat. Commun.13, 7795 (2022)..
Ahmed, H. et al. Metasurface for engineering superimposed ince-gaussian beams.Adv. Mater.36, 2312853 (2024)..
Khorasaninejad, M.&Capasso, F. Metalenses: versatile multifunctional photonic components.Science358, eaam8100 (2017)..
Ou, X. N. et al. Tunable polarization-multiplexed achromatic dielectric metalens.Nano Lett.22, 10049–10056 (2022)..
Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture.Nano Lett.18, 2124–2132 (2018)..
Liang, H. W. et al. Ultrahigh numerical aperture metalens at visible wavelengths.Nano Lett.18, 4460–4466 (2018)..
Chen, M. K. et al. Edge detection with meta-lens: from one dimension to three dimensions.Nanophotonics10, 3709–3715 (2021)..
Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light.Nano Lett.17, 6345–6352 (2017)..
Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light.Nat. Commun.3, 1198 (2012)..
Wang, R. X. et al. Multi-foci metalens for terahertz polarization detection.Optics Lett.45, 3506–3509 (2020)..
Zhou, T. et al. Helicity multiplexed terahertz multi-foci metalens.Opt. Lett.45, 463–466 (2020)..
Badloe, T. et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths.Adv. Sci.8, 2102646 (2021)..
Zang, X. F. et al. A multi-foci metalens with polarization-rotated focal points.Laser Photon. Rev.13, 1900182 (2019)..
Badloe, T., Seong, J.&Rho, J. Trichannel spin-selective metalenses.Nano Lett.23, 6958–6965 (2023)..
Badloe, T. et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens.ACS Nano17, 14678–14685 (2023)..
Wang, S. M. et al. A broadband achromatic metalens in the visible.Nat. Nanotechnol.13, 227–232 (2018)..
Balli, F. et al. A hybrid achromatic metalens.Nat. Commun.11, 3892 (2020)..
Wang, Y. J. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window.Nat. Commun.12, 5560 (2021)..
Chen, W. T. et al. Broadband achromatic metasurface-refractive optics.Nano Lett.18, 7801–7808 (2018)..
Shalaginov, M. Y. et al. Single-element diffraction-limited fisheye metalens.Nano Lett.20, 7429–7437 (2020)..
Shalaginov, M. Y. et al. Reconfigurable all-dielectric metalens with diffraction-limited performance.Nat. Commun.12, 1225 (2021)..
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science352, 1190–1194 (2016)..
Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography.Nano Lett.19, 8673–8682 (2019)..
Wang, R. X. et al. Metalens for generating a customized vectorial focal curve.Nano Lett.21, 2081–2087 (2021)..
Intaravanne, Y. et al. Color-selective three-dimensional polarization structures.Light Sci. Appl.11, 302 (2022)..
Li, Y. et al. Longitudinally variable 3D optical polarization structures.Sci. Adv.9, eadj6675 (2023)..
Wang, R. X. et al. Compact multi-foci metalens spectrometer.Light Sci. Appl.12, 103 (2023)..
Yang, Y. et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform.Light Sci. Appl.12, 152 (2023)..
So, S. et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond.Adv. Mater.35, 2206399 (2023)..
Zhang, Y. C. et al. Generating focused 3D perfect vortex beams by plasmonic metasurfaces.Adv. Opt. Mater.6, 1701228 (2018)..
Dorrah, A. H. et al. Metasurface optics for on-demand polarization transformations along the optical path.Nat. Photon.15, 287–296 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution