1.Division of Quantum Materials and Devices, Beijing Academy of Quantum Information Sciences, Beijing 100193, China
2.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3.School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4.Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Lijun Wang (ljwang@semi.ac.cn)
Quanyong Lu (luqy@baqis.ac.cn)
Published:31 October 2024,
Published Online:16 August 2024,
Received:26 February 2024,
Revised:30 July 2024,
Accepted:06 August 2024
Scan QR Code
Li, R. S. et al. High brightness terahertz quantum cascade laser with near-diffraction-limited Gaussian beam. Light: Science & Applications, 13, 2124-2430 (2024).
Li, R. S. et al. High brightness terahertz quantum cascade laser with near-diffraction-limited Gaussian beam. Light: Science & Applications, 13, 2124-2430 (2024). DOI: 10.1038/s41377-024-01567-2.
High-power terahertz (THz) quantum cascade laser
as an emerging THz solid-state radiation source
is attracting attention for numerous applications including medicine
sensing
and communication. However
due to the sub-wavelength confinement of the waveguide structure
direct beam brightness upscaling with device area remains elusive due to several mode competition and external optical lens is normally used to enhance the THz beam brightness. Here
we propose a metallic THz photonic crystal resonator with a phase-engineered design for single mode surface emission over a broad area. The quantum cascade surface-emitting laser is capable of delivering an output peak power over 185 mW with a narrow beam divergence of 4.4° × 4.4° at 3.88 THz. A high beam brightness of 1.6 × 10
7
W sr
−1
m
−2
with near-diffraction-limited M
2
factors of 1.4 in both vertical and lateral directions is achieved from a lar
ge device area of 1.6 × 1.6 mm
2
without using any optical lenses. The adjustable phase shift between the lattices enables a stable and high-intensity surface emission over a broad device area
which makes it an ideal light extractor for large-scale THz emitters. Our research paves the way to high brightness solid-state THz lasers and facilitates new applications in standoff THz imaging
detection
and diagnosis.
Nagatsuma, T., Ducournau, G.&Renaud, C. C. Advances in terahertz communications accelerated by photonics.Nat. Photonics10, 371–379 (2016)..
Stantchev, R. I. et al. Real-time terahertz imaging with a single-pixel detector.Nat. Commun.11, 2535 (2020)..
Kutas, M. et al. Terahertz quantum sensing.Sci. Adv.6, eaaz8065 (2020)..
Köhler, R. et al. Terahertz semiconductor-heterostructure laser.Nature417, 156–159 (2002)..
Sirtori, C., Barbieri, S.&Colombelli, R. Wave engineering with THz quantum cascade lasers.Nat. Photonics7, 691–701 (2013)..
Williams, B. S. Terahertz quantum-cascade lasers.Nat. Photonics1, 517–525 (2007)..
Vitiello, M. S. et al. Quantum cascade lasers: 20 years of challenges.Opt. Express23, 5167–5182 (2015)..
Dhillon, S. S. et al. The 2017 terahertz science and technology roadmap.J. Phys. D: Appl. Phys.50, 043001 (2017)..
Bosco, L. et al. Thermoelectrically cooled THz quantum cascade laser operating up to 210 K.Appl. Phys. Lett.115, 010601 (2019)..
Khalatpour, A. et al. High-power portable terahertz laser systems.Nat. Photonics15, 16–20 (2021)..
Khalatpour, A. et al. Enhanced operating temperature in terahertz quantum cascade lasers based on direct phonon depopulation.Appl. Phys. Lett.122, 161101 (2023)..
Tonouchi, M. Cutting-edge terahertz technology.Nat. Photonics1, 97–105 (2007)..
Jin, Y. et al. High power surface emitting terahertz laser with hybrid second- and fourth-order Bragg gratings.Nat. Commun.9, 1407 (2018)..
Amanti, M. I. et al. Low-divergence single-mode terahertz quantum cascade laser.Nat. Photonics3, 586–590 (2009)..
Khalatpour, A., Reno, J. L.&Hu, Q. Phase-locked photonic wire lasers byπcoupling.Nat. Photonics13, 47–53 (2019)..
Xu, L. Y. et al. Metasurface external cavity laser.Appl. Phys. Lett.107, 221105 (2015)..
Xu, L. Y. et al. Focusing metasurface quantum-cascade laser with a near diffraction-limited beam.Opt. Express24, 24117–24128 (2016)..
Curwen, C. A., Reno, J. L.&Williams, B. S. Terahertz quantum cascade VECSEL with watt-level output power.Appl. Phys. Lett.113, 011104 (2018)..
Matsubara, H. et al. GaN photonic-crystal surface-emitting laser at blue-violet wavelengths.Science319, 445–447 (2008)..
Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers.Nat. Photonics8, 406–411 (2014)..
Lu, H. Y. et al. Extracting more light for vertical emission: high power continuous wave operation of 1.3-μm quantum-dot photonic-crystal surface-emitting laser based on a flat band.Light Sci. Appl.8, 108 (2019)..
Contractor, R. et al. Scalable single-mode surface-emitting laser via open-Dirac singularities.Nature608, 692–698 (2022)..
Colombelli, R. et al. Quantum cascade surface-emitting photonic crystal laser.Science302, 1374–1377 (2003)..
Xu, G. Y. et al. Polarized single-lobed surface emission in mid-infrared, photonic-crystal, quantum-cascade lasers.Opt. Lett.35, 859–861 (2010)..
Liang, Y. et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers.Appl. Phys. Lett.114, 031102 (2019)..
Wang, Z. X. et al. Large area photonic crystal quantum cascade laser with 5 W surface-emitting power.Opt. Express27, 22708–22716 (2019)..
Zhang, H. et al. Terahertz photonic crystal quantum cascade lasers.Opt. Express15, 16818–16827 (2007)..
Chassagneux, Y. et al. Electrically pumped photonic-crystal terahertz lasers controlled by boundary conditions.Nature457, 174–178 (2009)..
Vitiello, M. S. et al. Photonic quasi-crystal terahertz lasers.Nat. Commun.5, 5884 (2014)..
Haldane, F. D. M.&Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry.Phys. Rev. Lett.100, 013904 (2008)..
Raghu, S.&Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals.Phys. Rev. A78, 033834 (2008)..
Ozawa, T. et al. Topological photonics.Rev. Mod. Phys.91, 015006 (2019)..
Yang, L. C. et al. Topological-cavity surface-emitting laser.Nat. Photonics16, 279–283 (2022)..
Shao, Z. K. et al. A high-performance topological bulk laser based on band-inversion-induced reflection.Nat. Nanotechnol.15, 67–72 (2020)..
Zeng, Y. Q. et al. Electrically pumped topological laser with valley edge modes.Nature578, 246–250 (2020)..
Han, S. et al. Photonic Majorana quantum cascade laser with polarization-winding emission.Nat. Commun.14, 707 (2023)..
Han, S. et al. Electrically-pumped compact topological bulk lasers driven by band-inverted bound states in the continuum.Light Sci. Appl.12, 145 (2023)..
Yoshida, M. et al. Double-lattice photonic-crystal resonators enabling high-brightness semiconductor lasers with symmetric narrow-divergence beams.Nat. Mater.18, 121–128 (2019)..
Sakata, R. et al. Dually modulated photonic crystals enabling high-power high-beam-quality two-dimensional beam scanning lasers.Nat. Commun.11, 3487 (2020)..
Morita, R. et al. Photonic-crystal lasers with two-dimensionally arranged gain and loss sections for high-peak-power short-pulse operation.Nat. Photonics15, 311–318 (2021)..
Inoue, T. et al. General recipe to realize photonic-crystal surface-emitting lasers with 100-W-to-1-kW single-mode operation.Nat. Commun.13, 3262 (2022)..
Yoshida, M. et al. High-brightness scalable continuous-wave single-mode photonic-crystal laser.Nature618, 727–732 (2023)..
Inoue, T. et al. Self-evolving photonic crystals for ultrafast photonics.Nat. Commun.14, 50 (2023)..
Hatakoshi, G. I. Analysis of beam quality factor for semiconductor lasers.Opt. Rev.10, 307–314 (2003)..
Chen, J. et al. High-intensity and low-divergence THz laser with 1D autofocusing symmetric Airy beams.Opt. Express27, 22877–22889 (2019)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution