1.Fang Lu Mesoscopic Optics and Quantum Electronics Laboratory, University of California, Los Angeles, CA, USA
2.State Key Laboratory of Precision Measurement Technology and Instruments, Tsinghua University, Beijing, China
Futai Hu (phyhft@gmail.com)
Abhinav Kumar Vinod (abhinavkumar@ucla.edu)
Chee Wei Wong (cheewei.wong@ucla.edu)
Published:30 November 2024,
Published Online:12 September 2024,
Received:13 December 2023,
Revised:03 August 2024,
Accepted:11 August 2024
Scan QR Code
Hu, F. T. et al. Spatio-temporal breather dynamics in microcomb soliton crystals. Light: Science & Applications, 13, 2620-2633 (2024).
Hu, F. T. et al. Spatio-temporal breather dynamics in microcomb soliton crystals. Light: Science & Applications, 13, 2620-2633 (2024). DOI: 10.1038/s41377-024-01573-4.
Solitons
the distinct balance between nonlinearity and dispersion
provide a route toward ultrafast electromagnetic pulse shaping
high-harmonic generation
real-time image processing
and RF photonic communications. Here we uniquely explore and observe the spatio-temporal breather dynamics of optical soliton crystals in frequency microcombs
examining spatial breathers
chaos transitions
and dynamical deterministic switching – in nonlinear measurements and theory. To understand the breather solitons
we describe their dynamical routes and two example transitional maps of the ensemble spatial breathers
with and without chaos initiation. We elucidate the physical mechanisms of the breather dynamics in the soliton crystal microcombs
in the interaction plane limit cycles and in the domain-wall understanding with parity symmetry breaking from third-order dispersion. We present maps of the accessible nonlinear regions
the breather frequency dependences on third-order dispersion and avoided-mode crossing strengths
and the transition between the collective breather spatio-temporal states. Our range of measurements matches well with our first-principles theory and nonlinear modeling. To image these soliton ensembles and their breathers
we further constructed panoramic temporal imaging for simultaneous fast- and slow-axis two-dimensional mapping of the breathers. In the phase-differential sampling
we present two-dimensional evolution maps of soliton crystal breathers
including with defects
in both stable breathers and breathers with drift. Our fundamental studies contribute to the understanding of nonlinear dynamics in soliton crystal complexes
their spatio-temporal dependences
and their stability-existence zones.
Versluis, F., van Esch, J. H.&Eelkema, R. Synthetic self-assembled materials in biological environments.Adv. Mater.28, 4576–4592 (2016)..
Rubenstein, M., Cornejo, A.&Nagpal, R. Programmable self-assembly in a thousand-robot swarm.Science345, 795–799 (2014)..
Strogatz, S. H.&Stewart, I. Coupled oscillators and biological synchronization.Sci. Am.269, 102–109 (1993)..
Hernandez-Ortiz, J. P., Stoltz, C. G.&Graham, M. D. Transport and collective dynamics in suspensions of confined swimming particles.Phys. Rev. Lett.95, 204501 (2005)..
Watts, D. J.&Strogatz, S. H. Collective dynamics of 'small-world' networks.Nature393, 440–442 (1998)..
Timme, M.&Wolf, F. The simplest problem in the collective dynamics of neural networks: is synchrony stable?Nonlinearity21, 1579–1599 (2008)..
Casadiego, J., Nitzan, M., Hallerberg, S.&Timme, M. Model-free inference of direct network interactions from nonlinear collective dynamics.Nat. Commun.8, 2192 (2017)..
Desai, R. C.&Kapral, R.Dynamics of Self-organized and Self-assembled Structures(Cambridge University Press, 2009).
Witthaut, D. et al. Collective nonlinear dynamics and self-organization in decentralized power grids.Rev. Mod. Phys.94, 015005 (2022)..
Stegeman, G. I.&Segev, M. Optical spatial solitons and their interactions: Universality and diversity.Science286, 1518–1523 (1999)..
Buryak, A. V., Di Trapani, P., Skryabin, D. V.&Trillo, S. Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications.Phys. Rep.370, 63–235 (2002)..
Grelu, P.&Akhmediev, N. Dissipative solitons for mode-locked lasers.Nat. Photon.6, 84–92 (2012)..
Xiao, Z. et al. Near-zero-dispersion soliton and broadband modulational instability Kerr microcombs in anomalous dispersion.Light Sci. Appl.12, 33 (2023)..
Li, Z. et al. Ultrashortdissipative Raman solitons in Kerr resonators driven with phase-coherent optical pulses.Nat. Photon.17, 1–8 (2023)..
Blanco-Redondo, A., de Sterke, C. M., Xu, C., Wabnitz, S.&Turitsyn, S. K. The bright prospects of optical solitons after 50 years.Nat. Photon.17, 937–942 (2023)..
Anderson, M. H. et al. Dissipative solitons and switching waves in dispersion-modulated Kerr cavities.Phys. Rev. X13, 011040 (2023)..
Herr, T. et al. Temporal solitons in optical microresonators.Nat. Photon.8, 145–152 (2014)..
Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications.Nature546, 274–279 (2017)..
Hu, J. Q. et al. Reconfigurable radiofrequency filters based on versatile soliton microcombs.Nat. Commun.11, 4377 (2020)..
Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator.Nat. Commun.11, 374 (2020)..
Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb.Nature581, 164–170 (2020)..
Dudley, J. M., Dias, F., Erkintalo, M.&Genty, G. Instabilities, breathers and rogue waves in optics.Nat. Photon.8, 755–764 (2014)..
Yu, M. J. et al. Breather soliton dynamics in microresonators.Nat. Commun.8, 14569 (2017)..
Xu, G., Gelash, A., Chabchoub, A., Zakharov, V.&Kibler, B. Breather wave molecules.Phys. Rev. Lett.122, 084101 (2019)..
Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L.&Kippenberg, T. J. Breathing dissipative solitons in optical microresonators.Nat. Commun.8, 736 (2017)..
Weng, W. L. et al. Heteronuclear soliton molecules in optical microresonators.Nat. Commun.11, 2402 (2020)..
Guo, H. et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators.Nat. Phys.13, 94–102 (2017)..
Liu, Y. et al. Phase-tailored assembly and encoding of dissipative soliton molecules.Light Sci. Appl.12, 123 (2023)..
Turaev, D., Vladimirov, A. G.&Zelik, S. Long-range interaction and synchronization of oscillating dissipative solitons.Phys. Rev. Lett.108, 263906 (2012)..
Bao, C. Y. et al. Quantum diffusion of microcavity solitons.Nat. Phys.17, 462–466 (2021)..
Cole, D. C., Lamb, E. S., Del'Haye, P., Diddams, S. A.&Papp, S. B. Soliton crystals in Kerr resonators.Nat. Photon.11, 671–676 (2017)..
Yao, B. C. et al. Gate-tunable frequency combs in graphene-nitride microresonators.Nature558, 410–414 (2018)..
Karpov, M. et al. Dynamics of soliton crystals in optical microresonators.Nat. Phys.15, 1071–1077 (2019)..
Nie, M. et al. Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers.Light Sci. Appl.11, 296 (2022)..
Lu, Z. Z. et al. Synthesized soliton crystals.Nat. Commun.12, 3179 (2021)..
Murray, C. E. et al. Investigating the thermal robustness of soliton crystal microcombs.Opt. Express31,37749–37762 (2023)..
Taheri, H., Matsko, A. B.&Maleki, L. Optical lattice trap for Kerr solitons.Eur. Phys. J. D.71, 1–13 (2017)..
Afridi, A. A. et al. Versatile octave-spanning soliton crystals with high conversion efficiency in a Si3N4microresonator.Opt. Express31, 33191–33199 (2023)..
Boggio, J. M. C. et al. Efficient Kerr soliton comb generation in micro-resonator with interferometric back-coupling.Nat. Commun.13, 1292 (2022)..
Corcoran, B. et al. Ultra-dense optical data transmission over standard fibre with a single chip source.Nat Commun11, 2568 (2020)..
Xu, X. et al. 11 TOPS photonics convolutional accelerator or optical neural networks.Nature589, 44–51 (2021)..
Tan, M. Photonic signal processor based on a Kerr microcomb for real-time video image processing.Commun. Eng.2, 94 (2023)..
Taheri, H., Matsko, A. B., Maleki, L.&Sacha, K. All-optical dissipative discrete time crystals.Nat. Commun.13, 848 (2022)..
Mussot, A. et al. Fibre multi-wave mixing combs reveal the broken symmetry of Fermi-Pasta-Ulam recurrence.Nat. Photon.12, 303 (2018)..
Vinod, A. K. et al. Frequency microcomb stabilization via dual-microwave control.Commun. Phys.-UK4, 81 (2021)..
Akhmediev, N., Soto-Crespo, J. M.&Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg-Landau equation approach.Phys. Rev. E63, 056602 (2001)..
Ustinov, A. B., Demidov, V. E., Kondrashov, A. V., Kalinikos, B. A.&Demokritov, S. O. Observation of the chaotic spin-wave soliton trains in magnetic films.Phys. Rev. Lett.106, 017201 (2011)..
Wei, Z. W. et al. Pulsating soliton with chaotic behavior in a fiber laser.Opt. Lett.43, 5965–5968 (2018)..
Xin, F. F. et al. Evidence of chaotic dynamics in three-soliton collisions.Phys. Rev. Lett.127, 133901 (2021)..
Jang, J. K., Erkintalo, M., Coen, S.&Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons.Nat. Commun.6, 7370 (2015)..
Garbin, B., Javaloyes, J., Tissoni, G.&Barland, S. Hopping and emergent dynamics of optical localized states in a trapping potential.Chaos30, 093126 (2020)..
Chembo, Y. K.&Menyuk, C. R. Spatiotemporal Lugiato-Lefever formalism for Kerr-comb generation in whispering-gallery-mode resonators.Phys. Rev. A87, 053852 (2013)..
Godey, C., Balakireva, I. V., Coillet, A.&Chembo, Y. K. Stability analysis of the spatiotemporal Lugiato-Lefever model for Kerr optical frequency combs in the anomalous and normal dispersion regimes.Phys. Rev. A89, 063814 (2014)..
Parra-Rivas, P., Gomila, D., Gelens, L.&Knobloch, E. Bifurcation structure of localized states in the Lugiato-Lefever equation with anomalous dispersion.Phys. Rev. E97, 042204 (2018)..
Wang, H. et al. Self-regulating soliton domain walls in microresonators.Phys. Rev. A106, 053508 (2022)..
Parra-Rivas, P., Coulibaly, S., Clerc, M. G.&Tlidi, M. Influence of stimulated Raman scattering on Kerr domain walls and localized structures.Phys. Rev. A103, 013507 (2021)..
Parra-Rivas, P., Gelens, L., Hansson, T., Wabnitz, S.&Leo, F. Frequency comb generation through the locking of domain walls in doubly resonant dispersive optical parametric oscillators.Opt. Lett.44, 2004–2007 (2019)..
Herink, G., Kurtz, F., Jalali, B., Solli, D. R.&Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules.Science356, 50–53 (2017)..
Soto-Crespo, J. M., Grelu, P., Akhmediev, N.&Devine, N. Soliton complexes in dissipative systems: Vibrating, shaking, and mixed soliton pairs.Phys. Rev. E75, 016613 (2007)..
Wang, W. Q. et al. Robust soliton crystals in a thermally controlled microresonator.Opt. Lett.43, 2002–2005 (2018)..
Li, Y. N. et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs.Light-Sci. Appl9, 52 (2020)..
Li, B. W., Huang, S. W., Li, Y. N., Wong, C. W.&Wong, K. K. Y. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics.Nat. Commun.8, 61 (2017)..
Tan, M. et al. Photonic RF arbitrary waveform generator based on a soliton crystal micro-comb source.J. Lightwave Technol.38, 6221–6226 (2020)..
Huang, S. W. et al. Smooth and flat phase-locked Kerr frequency comb generation by higher order mode suppression.Sci. Rep.6, 26255 (2016)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution