1.State Key Laboratory of Intelligent Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
2.Optics Valley Laboratory, Wuhan, Hubei 430074, China
Honggang Gu (hongganggu@hust.edu.cn)
Shiyuan Liu (shyliu@hust.edu.cn)
Published:31 October 2024,
Published Online:26 August 2024,
Received:22 April 2024,
Revised:03 August 2024,
Accepted:13 August 2024
Scan QR Code
Chen, C. C., Gu, H. G. & Liu, S. Y. Ultra-broadband diffractive imaging with unknown probe spectrum. Light: Science & Applications, 13, 2276-2287 (2024).
Chen, C. C., Gu, H. G. & Liu, S. Y. Ultra-broadband diffractive imaging with unknown probe spectrum. Light: Science & Applications, 13, 2276-2287 (2024). DOI: 10.1038/s41377-024-01581-4.
Strict requirement of a coherent spectrum in coherent diffractive imaging (CDI) architectures poses a significant obstacle to achieving efficient photon utilization across the full spectrum. To date
nearly all broadband computational imaging experiments have relied on accurate spectroscopic measurements
as broad spectra are incompatible with conventional CDI systems. This paper presents an advanced approach to broaden the scope of CDI to ultra-broadband illumination with unknown probe spectrum
effectively addresses the key challenges encountered by existing state-of-the-art broadband diffractive imaging frameworks. This advancement eliminates the necessity for
prior
knowledge of probe spectrum and relaxes constraints on non-dispersive samples
resulting in a significant extension in spectral bandwidth
achieving a nearly fourfold improvement in bandlimit compared to the existing benchmark. Our method not only monochromatizes a broadband diffraction pattern from unknown illumination spectrum
but also determines the compressive sampled profile of spectrum of the diffracted radiation. This superiority is experimentally validated using both CDI and ptychography techniques on an ultra-broadband supercontinuum with relative bandwidth exceeding 40%
revealing a significantly enhanced coherence and improved reconstruction with high fidelity under ultra-broadband illumination.
Chapman, H. N.&Nugent, K. A. Coherent lensless X-ray imaging.Nat. Photonics4, 833–839 (2010)..
Miao, J. W. et al. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens.Nature400, 342–344 (1999)..
Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy.Science321, 379–382 (2008)..
Gerchberg, R. W.&Saxton, W. O. Practical algorithm for the determination of phase from image and diffraction plane pictures.Opt. (Stuttg.)35, 237–246 (1972)..
Fienup, J. R. Reconstruction of an object from the modulus of its Fourier transform.Opt. Lett.3, 27–29 (1978)..
Elser, V. Phase retrieval by iterated projections.J. Optical Soc. Am. A20, 40–55 (2003)..
Luke, D. R. Relaxed averaged alternating reflections for diffraction imaging.Inverse Probl.21, 37–50 (2005)..
Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography.Nature432, 885–888 (2004)..
Zhang, W. H. et al. Twin-image-free holography: a compressive sensing approach.Phys. Rev. Lett.121, 093902 (2018)..
Rodenburg, J. M.&Faulkner, H. M. L. A phase retrieval algorithm for shifting illumination.Appl. Phys. Lett.85, 4795–4797 (2004)..
Maiden, A., Johnson, D.&Li, P. Further improvements to the ptychographical iterative engine.Optica4, 736–745 (2017)..
Sha, H. Z., Cui, J. Z.&Yu, R. Deep sub-angstrom resolution imaging by electron ptychography with misorientation correction.Sci. Adv.8, eabn2275 (2022)..
Jiang, S. W. et al. Resolution-enhanced parallel coded ptychography for high-throughput optical imaging.ACS Photonics8, 3261–3271 (2021)..
Zheng, G. A., Horstmeyer, R.&Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy.Nat. Photonics7, 739–745 (2013)..
Li, S. et al. Far-field synthetic aperture imaging via fourier ptychography with quasi-plane wave illumination.Adv. Photonics Res.4, 2300180 (2023)..
Whitehead, L. W. et al. Diffractive imaging using partially coherent X rays.Phys. Rev. Lett.103, 243902 (2009)..
Gardner, D. F. et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source.Nat. Photonics11, 259–263 (2017)..
Baksh, P. D. et al. Quantitative and correlative extreme ultraviolet coherent imaging of mouse hippocampal neurons at high resolution.Sci. Adv.6, eaaz3025 (2020)..
Ravasio, A. et al. Single-shot diffractive imaging with a table-top femtosecond soft x-ray laser-harmonics source.Phys. Rev. Lett.103, 028104 (2009)..
Fienup, J. R. Phase retrieval for undersampled broadband images.J. Optical Soc. Am. A16, 1831–1837 (1999)..
Thibault, P.&Menzel, A. Reconstructing state mixtures from diffraction measurements.Nature494, 68–71 (2013)..
Batey, D. J., Claus, D.&Rodenburg, J. M. Information multiplexing in ptychography.Ultramicroscopy138, 13–21 (2014)..
Goldberger, D. et al. Spatiospectral characterization of ultrafast pulse-beams by multiplexed broadband ptychography.Opt. Express29, 32474–32490 (2021)..
Loetgering, L. et al. Tailoring spatial entropy in extreme ultraviolet focused beams for multispectral ptychography.Optica8, 130–138 (2021)..
Noom, D. W. E. et al. High-speed multi-wavelength Fresnel diffraction imaging.Opt. Express22, 30504–30511 (2014)..
Chen, B. et al. Multiple wavelength diffractive imaging.Phys. Rev. A79, 023809 (2009)..
Yao, Y. et al. Broadband X-ray ptychography using multi-wavelength algorithm.J. Synchrotron Radiat.28, 309–317 (2021)..
Abbey, B. et al. Lensless imaging using broadband X-ray sources.Nat. Photonics5, 420–424 (2011)..
Baksh, P. D. et al. Wide-field broadband extreme ultraviolet transmission ptychography using a high-harmonic source: publisher's note.Opt. Lett.41, 3057 (2016)..
Goldberger, D. et al. Single-pulse, reference-free, spatiospectral measurement of ultrashort pulse-beams.Optica9, 894–902 (2022)..
Rana, A. et al. Potential of attosecond coherent diffractive imaging.Phys. Rev. Lett.125, 086101 (2020)..
Jansen, G. S. M. et al. Diffractive shear interferometry for extreme ultraviolet high-resolution lensless imaging.Opt. Express26, 12479–12489 (2018)..
De Beurs, A. C. C. et al. Extreme ultraviolet lensless imaging without object support through rotational diversity in diffractive shearing interferometry.Opt. Express28, 5257–5266 (2020)..
Huijts, J. et al. Broadband coherent diffractive imaging.Nat. Photonics14, 618–622 (2020)..
Witte, S. et al. Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths.Light Sci. Appl.3, e163 (2014)..
Chen, C. C., Gu, H. G.&Liu, S. Y. Ultra-simplified diffraction-based computational spectrometer.Light Sci. Appl.13, 9 (2024)..
Phillips, D. L. A technique for the numerical solution of certain integral equations of the first kind.J. ACM9, 84–97 (1962)..
Doicu, A., Trautmann, T.&Schreier, F. Tikhonov regularization for nonlinear problems. In:Numerical Regularization for Atmospheric Inverse Problems. Springer Berlin Heidelberg: Berlin, Heidelberg, 163-220 (2010).
Bell, B. Solutions of Ill-posed problems. by A. N. Tikhonov, V. Y. Arsenin.Math. Comput.32, 1320–1322 (1978)..
Van Der Vorst, H. A. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems.SIAM J. Sci. Stat. Comput.13, 631–644 (1992)..
Hansen, P. C. REGULARIZATION TOOLS: a matlab package for analysis and solution of discrete ill-posed problems.Numer. Algorithms6, 1–35 (1994)..
Liu, R. F. et al. Broadband ptychographic imaging with an accurately sampled spectrum.Phys. Rev. A107, 033510 (2023)..
Chen, B. et al. Diffraction imaging: the limits of partial coherence.Phys. Rev. B86, 235401 (2012)..
Dilanian, R. A. et al. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source.J. Appl. Phys.106, 023110 (2009)..
Tanksalvala, M. et al. Nondestructive, high-resolution, chemically specific 3D nanostructure characterization using phase-sensitive EUV imaging reflectometry.Sci. Adv.7, eabd9667 (2021)..
Wood II, O. et al. Alternative materials for high numerical aperture extreme ultraviolet lithography mask stacks. Proceedings of SPIE 9422, Extreme Ultraviolet (EUV) Lithography VI. San Jose: SPIE, 94220I. 2015)
Horé, A.&Ziou, D. Image quality metrics: PSNR vs. SSIM. Proceedings of 20th International Conference on Pattern Recognition. Istanbul: IEEE, 2366-2369. 2010)
Chen, C. C., Gu, H. G.&Liu, S. Y. Noise-robust ptychography using dynamic sigmoid-remolding.Opt. Laser Technol.172, 110510 (2024)..
Craven, P.&Wahba, G. Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation.Numerische Mathematik31, 377–403 (1978)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution