1.School of Electrical Engineering, Hanyang University, Ansan, South Korea
2.Seoul Center, Korea Basic Science Institute, Seoul, South Korea
3.Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, China
4.Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China
Sangwan Sim (swsim@hanyang.ac.kr)
Published:30 November 2024,
Published Online:06 September 2024,
Received:15 April 2024,
Revised:29 July 2024,
Accepted:14 August 2024
Scan QR Code
Suk, S. H. et al. Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe3. Light: Science & Applications, 13, 2576-2588 (2024).
Suk, S. H. et al. Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe3. Light: Science & Applications, 13, 2576-2588 (2024). DOI: 10.1038/s41377-024-01585-0.
In cutting-edge optical technologies
polarization is a key for
encoding and transmitting vast information
highlighting the importance of selectively switching and modulating polarized light. Recently
anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals
but face challenges with low polarization ratios and limited spectral ranges. Here
we apply strain to quasi-one-dimensional layered ZrSe
3
to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially
transient absorption on unstrained ZrSe
3
reveals a sub-picosecond switching response in polarization along a specific crystal axis
attributed to shifting-recovery dynamics of an anisotropic exciton. However
its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation
we apply strain to ZrSe
3
by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components
doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe
3
. It also effectively tunes the switching energy at a shift rate of ~93 meV %
-1
. This strain-tunable switching is repeatable
reversible
and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure
causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance
wavelength-tunable
polarization-selective ultrafast optical switching.
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera.Science365, eaax1839 (2019)..
Wang, Y. Q. et al. Gigabit polarization division multiplexing in visible light communication.Opt. Lett.39, 1823–1826 (2014)..
Yu, Y. et al. Intra-chip optical interconnection based on polarization division multiplexing photonic integrated circuit.Opt. Express25, 28330–28336 (2017)..
Hurtado, A. et al. Investigation of vertical cavity surface emitting laser dynamics for neuromorphic photonic systems.Appl. Phys. Lett.100, 103703 (2012)..
Jin, J. et al. Telecom-wavelength atomic quantum memory in optical fiber for heralded polarization qubits.Phys. Rev. Lett.115, 140501 (2015)..
Winter, M., Setti, D.&Petermann, K. Cross-polarization modulation in polarization-division multiplex transmission.IEEE Photon. Technol. Lett.22, 538–540 (2010)..
Chai, Z. et al. Ultrafast all-optical switching.Adv. Opt. Mater.5, 1600665 (2017)..
Karabchevsky, A. et al. On-chip nanophotonics and future challenges.Nanophotonics9, 3733–3753 (2020)..
Wang, J. et al. Anisotropic low-dimensional materials for polarization-sensitive photodetectors: from materials to devices.Adv. Opt. Mater.10, 2102436 (2022)..
Huang, S. Y. et al. Optical properties and polaritons of low symmetry 2D materials.Photon. Insights2, R03 (2023)..
Suk, S. H. et al. Ultrafast optical properties and applications of anisotropic 2D materials.Nanophotonics13, 107–154 (2024)..
Liu, H. H. et al. Nonlinear optical properties of anisotropic two-dimensional layered materials for ultrafast photonics.Nanophotonics9, 1651–1673 (2020)..
Sim, S. et al. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2.Nat. Commun.7, 13569 (2016)..
He, J. Q. et al. Exceptional and anisotropic transport properties of photocarriers in black phosphorus.ACS Nano9, 6436–6442 (2015)..
Zhang, C. X. et al. Anisotropic nonlinear optical properties of a SnSe flake and a novel perspective for the application of all-optical switching.Adv. Opt. Mater.7, 1900631 (2019)..
Wang, C. et al. Anisotropic properties of tellurium nanoflakes probed by polarized raman and transient absorption microscopy: implications for polarization-sensitive applications.ACS Appl. Nano Mater.5, 1767–1774 (2022)..
Sun, K. W. et al. Dynamical response of nonlinear optical anisotropy in a tin sulfide crystal under ultrafast photoexcitation.J. Phys. Chem. Lett.13, 9355–9362 (2022)..
Seo, S. B. et al. Completely anisotropic ultrafast optical switching and direction-dependent photocarrier diffusion in layered ZrTe5.Adv. Opt. Mater.11, 2201544 (2023)..
Suk, S. H. et al. Polarization-driven ultrafast optical switching in TiS3nanoribbons via anisotropic hot carrier dynamics.Adv. Opt. Mater.11, 2300370 (2023)..
Yang, Z. X. et al. Ultrafast laser state active controlling based on anisotropic quasi-1D material.Light Sci. Appl.13, 81 (2024)..
Osada, K. et al. Phonon properties of few-layer crystals of quasi-one-dimensional ZrS3and ZrSe3.J. Phys. Chem. C120, 4653–4659 (2016)..
Li, H. et al. Strongly anisotropic strain-tunability of excitons in exfoliated ZrSe3.Adv. Mater.34, 2103571 (2022)..
Kurita, S., Tanaka, M.&Lévy, F. Optical spectra near the band edge of ZrS3and ZrSe3.Phys. Rev. B48, 1356–1360 (1993)..
El Alaoui Lamrani, H.&Aubin, M. Elliott's model and thermoreflectivity: application to the layered structure ZrSe3.Phys. Rev. B43, 4827–4834 (1991)..
Wang, X. G. et al. Polarization sensitive photodetector based on quasi-1D ZrSe3.J. Semicond.43, 102001 (2022)..
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides.Rev. Mod. Phys.90, 021001 (2018)..
Gelly, R. J. et al. Probing dark exciton navigation through a local strain landscape in a WSe2monolayer.Nat. Commun.13, 232 (2022)..
Qi, P. F. et al. Giant excitonic upconverted emission from two-dimensional semiconductor in doubly resonant plasmonic nanocavity.Light Sci. Appl.11, 176 (2022)..
Dai, Y. C. et al. Phonon-assisted upconversion in twisted two-dimensional semiconductors.Light Sci. Appl.12, 6 (2023)..
Qi, P. F. et al. Phonon scattering and exciton localization: molding exciton flux in two dimensional disorder energy landscape.eLight1, 6 (2021)..
Qi, P. F. et al. Remote lightening and ultrafast transition: intrinsic modulation of exciton spatiotemporal dynamics in monolayer MoS2.ACS Nano14, 6897–6905 (2020)..
Wu, J. J. et al. Visible light nonlinear absorption and optical limiting of ultrathin ZrSe3nanoflakes.Nanotechnology27, 465203 (2016)..
Yi, Q. et al. Broadband nanosecond pulse generation modulated by zirconium triselenide nanoflakes.Opt. Mater. Express13, 997–1006 (2023)..
Kurita, S. et al. Optical properties of ZrS3and ZrSe3.Phys. B+C.105, 169–173 (1981)..
Pacilé, D. et al. Photoemission and optical studies of ZrSe3, HfSe3, and ZrS3.Phys. Rev. B76, 155406 (2007)..
Jin, Y. D., Li, X. X.&Yang, J. L. Single layer of MX3(M = Ti, Zr; X = S, Se, Te): a new platform for nano-electronics and optics.Phys. Chem. Chem. Phys.17, 18665–18669 (2015)..
Bae, S. et al. Exciton-dominated ultrafast optical response in atomically thin PtSe2.Small17, 2103400 (2021)..
Ruppert, C. et al. The role of electronic and phononic excitation in the optical response of monolayer WS2after ultrafast excitation.Nano Lett.17, 644–651 (2017)..
Chen, C. D. et al. Nonlinear optical properties and ultrafast carrier dynamics of 2D indium selenide nanosheets.Adv. Opt. Mater.9, 2101432 (2021)..
Chen, H. L. et al. Direct observation of photon induced giant band renormalization in 2D PdSe2dichalcogenide by transient absorption spectroscopy.Small19, 2302760 (2023)..
Schmidt, R. et al. Ultrafast coulomb-induced intervalley coupling in atomically thin WS2.Nano Lett.16, 2945–2950 (2016)..
Sun, Q. C. et al. Observation of a burstein-moss shift in rhenium-doped MoS2nanoparticles.ACS Nano7, 3506–3511 (2013)..
Schmitt-Rink, S., Chemla, D. S.&Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures.Phys. Rev. B32, 6601–6609 (1985)..
Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites.Nat. Photon.10, 53–59 (2016)..
Wu, W. Z. et al. The pump fluence and wavelength-dependent ultrafast carrier dynamics and optical nonlinear absorption in black phosphorus nanosheets.Nanophotonics9, 2033–2043 (2020)..
Zhuo, X. et al. Dynamical evolution of anisotropic response of type-Ⅱ Weyl semimetal TaIrTe4under ultrafast photoexcitation.Light Sci. Appl.10, 101 (2021)..
Li, Z. W. et al. Efficient strain modulation of 2D materials via polymer encapsulation.Nat. Commun.11, 1151 (2020)..
Li, Y. et al. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering.2D Materials5, 021002 (2018)..
Carrascoso, F. et al. Strain engineering in single-, bi- and tri-layer MoS2, MoSe2, WS2and WSe2.Nano Res.14, 1698–1703 (2021)..
Liu, H. et al. Direct visualization of exciton transport in defective few-layer WS2by ultrafast microscopy.Adv. Mater.32, 1906540 (2020)..
Sim, S. et al. Light polarization-controlled conversion of ultrafast coherent-incoherent exciton dynamics in few-layer ReS2.Nano Lett.19, 7464–7469 (2019)..
Li, H. et al. Towards efficient strain engineering of 2D materials: a four-points bending approach for compressive strain.Nano Res.17, 5317–5325 (2024)..
Brennan, C. J. et al. Interface adhesion between 2D materials and elastomers measured by buckle delaminations.Adv. Mater. Interfaces2, 1500176 (2015)..
Zhang, X. D. et al. Ultrafast carrier dynamic anisotropy of single crystal rhenium disulfide flake based on transient absorption spectroscopy.Opt. Eng.62, 047102 (2023)..
Huo, C. F. et al. Thickness-dependent exciton relaxation dynamics of few-layer rhenium diselenide.Chin. Phys. B32, 067203 (2023)..
Jiang, S. L. et al. Salt-assisted growth and ultrafast photocarrier dynamics of large-sized monolayer ReSe2.Nano Res.13, 667–675 (2020)..
Huo, C. F. et al. Thickness-dependent ultrafast charge-carrier dynamics and coherent acoustic phonon oscillations in mechanically exfoliated PdSe2flakes.Phys. Chem. Chem. Phys.23, 20666–20674 (2021)..
Jia, L. N. et al. Ultrafast carrier dynamics in 2D NbTe2films: implications for photonic and optoelectronic devices.ACS Appl. Nano Mater.5, 17348–17355 (2022)..
Ma, X. R. et al. Ultrafast generation and detection of coherent acoustic phonons in SnS0.91Se0.09.Results Phys.45, 106241 (2023)..
Suk, S. H. et al. Ultrafast visible/near-Infrared dual-band selective optical switching via polarization control in layered low-symmetry TlSe.Laser Photon. Rev.18, 2300680 (2024)..
Suess, R. J. et al. Carrier dynamics and transient photobleaching in thin layers of black phosphorus.Appl. Phys. Lett.107, 081103 (2015)..
Wu, S. M. et al. Dichroic photoelasticity in black phosphorus revealed by ultrafast coherent phonon dynamics.J. Phys. Chem. Lett.12, 5871–5878 (2021)..
Cui, Q. N. et al. Transient absorption measurements on anisotropic monolayer ReS2.Small11, 5565–5571 (2015)..
Seo, S. B. et al. Ultrafast tunable broadband optical anisotropy in two-dimensional ReS2.Phys. Rev. Appl.18, 014010 (2022)..
Island, J. O. et al. Environmental instability of few-layer black phosphorus.2D Materials2, 011002 (2015)..
Niu, J. J. et al. Electrical transport in nanothick ZrTe5sheets: from three to two dimensions.Phys. Rev. B95, 035420 (2017)..
Silva-Guillén, J. A. et al. Strain tuning of the anisotropy in the optoelectronic properties of TiS3.ACS Photon.5, 3231–3237 (2018)..
Schirato, A. et al. Transient optical symmetry breaking for ultrafast broadband dichroism in plasmonic metasurfaces.Nat. Photon.14, 723–727 (2020)..
Wang, K. D. et al. High contrast, femtosecond light polarization manipulation in epsilon-near-zero material coupled to a plasmonic nanoantenna array.ACS Photon.8, 2791–2799 (2021)..
Du, J. L. et al. Strain engineering in 2D material-based flexible optoelectronics.Small Methods5, 2000919 (2021)..
Qi, Y. P. et al. Recent progress in strain engineering on van der Waals 2D materials: tunable electrical, electrochemical, magnetic, and optical properties.Adv. Mater.35, 2205714 (2023)..
Zhang, L. et al. Effect of strain on exciton dynamics in monolayer WS2.Chin. Phys. B28, 087201 (2019)..
Hong, H. et al. Modulation of carrier lifetime in MoS2monolayer by uniaxial strain.Chin. Phys. B29, 077201 (2020)..
Mondal, N. et al. Photoexcitation dynamics and long‐lived excitons in strain‐engineered transition metal dichalcogenides.Adv. Mater.34, 2110568 (2022)..
Guo, S. et al. Tensile strain-dependent ultrafast electron transfer and relaxation dynamics in flexible WSe2/MoS2heterostructures.J. Phys. Chem. Lett.14, 10920–10929 (2023)..
Wang, H. et al. Anisotropic strain-tailoring nonlinear optical response in van der Waals NbOI2.Nano Lett.24, 3413–3420 (2024)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution