1.Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
2.Center for Vision Science, University of Rochester, New York, NY 14623, USA
3.Department of Mechanical Engineering, University of Washington, Seattle, WA 98105, USA
4.Department of Physics, University of Washington, Seattle 98195, USA
Aamod Shanker (aamod@berkeley.edu)
Arka Majumdar (arka@uw.edu)
Published:31 December 2024,
Published Online:08 November 2024,
Received:19 March 2024,
Revised:13 August 2024,
Accepted:15 August 2024
Scan QR Code
Shanker, A. et al. Quantitative phase imaging endoscopy with a metalens. Light: Science & Applications, 13, 3196-3209 (2024).
Shanker, A. et al. Quantitative phase imaging endoscopy with a metalens. Light: Science & Applications, 13, 3196-3209 (2024). DOI: 10.1038/s41377-024-01587-y.
Quantitative phase imaging (QPI) recovers the exact wavefront of light from intensity measurements. Topographical and optical density maps of translucent microscopic bodies can be extracted from these quantified phase shifts. We demonstrate quantitative phase imaging at the tip of a coherent fiber bundle using chromatic aberrations inherent in a silicon nitride hyperboloid metalens. Our method leverages spectral multiplexing to recover phase from multiple defocus planes in a single capture using a color camera. Our 0.5 mm aperture metalens shows robust quantitative phase imaging capability with a
$$ {28}^{\circ} $$
field of view and 0.
$$ {2}{\pi} $$
phase resolution (~ 0.
$$ {1}{\lambda} $$
in air) for experiments with an endoscopic fiber bundle. Since the spectr
al functionality is encoded directly in the imaging lens
the metalens acts both as a focusing element and a spectral filter. The use of a simple computational backend will enable real-time operation. Key limitations in the adoption of phase imaging methods for endoscopy such as multiple acquisition
interferometric alignment or mechanical scanning are completely mitigated in the reported metalens based QPI.
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science352, 1190–1194, https://doi.org/10.1126/science.aaf6644 (2016)..
Lalanne, P. et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff.J. Opt. Soc. Am. A16, 1143–1156 (1999)..
Chen, W. T., Zhu, A. Y.&Capasso, F. Flat optics with dispersion-engineered metasurfaces.Nat. Rev. Mater.5, 604–620 (2020)..
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Colburn, S., Zhan, A. L.&Majumdar, A. Metasurface optics for full-color computational imaging.Sci. Adv.4, eaar2114, https://doi.org/10.1126/sciadv.aar2114 (2018)..
Wang, P., Mohammad, N.&Menon, R. Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing.Sci. Rep.6, 21545, https://doi.org/10.1038/srep21545 (2016)..
Neshev, D. N.&Miroshnichenko, A. E. Enabling smart vision with metasurfaces.Nat. Photonics17, 26–35, https://doi.org/10.1038/s41566-022-01126-4 (2023)..
Xie, N. Z. et al. Large field-of-view short-wave infrared metalens for scanning fiber endoscopy.J. Biomed. Opt.28, 094802, https://doi.org/10.1117/1.Jbo.28.9.094802 (2023)..
Fröch, J. E. et al. Real time full-color imaging in a meta-optical fiber endoscope.eLight3, 13, https://doi.org/10.1186/s43593-023-00044-4 (2023)..
Park, Y., Depeursinge, C.&Popescu, G. Quantitative phase imaging in biomedicine.Nat. Photonics12, 578–589, https://doi.org/10.1038/s41566-018-0253-x (2018)..
Li, J. J. et al. Transport of intensity diffraction tomography with non-interferometric synthetic aperture for three-dimensional label-free microscopy.Light Sci. Appl.11, 154, https://doi.org/10.1038/s41377-022-00815-7 (2022)..
Xiong, J. H. et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives.Light Sci. Appl.10, 216, https://doi.org/10.1038/s41377-021-00658-8 (2021)..
Gabor, D. A new microscopic principle.Nature161, 777–778, https://doi.org/10.1038/161777a0 (1948)..
Chen, X. et al. Wolf phase tomography (WPT) of transparent structures using partially coherent illumination.Light Sci. Appl.9, 142, https://doi.org/10.1038/s41377-020-00379-4 (2020)..
Popescu, G.Quantitative Phase Imaging of Cells and Tissues(McGraw-Hill, 2011).
Chen, X., Kandel,M. E.&Popescu, G. Spatial light interference microscopy: principle and applications to biomedicine.Adv. Opt. Photonics13, 353–425, https://doi.org/10.1364/aop.417837 (2021)..
Kou, S. S. et al. Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging.Opt. Lett.35, 447–449, https://doi.org/10.1364/OL.35.000447 (2010)..
Teague, M. R. Deterministic phase retrieval: a Green's function solution.J. Opt. Soc. Am.73, 1434–1441 (1983)..
Petruccelli, J. C., Tian, L.&Barbastathis, G. The transport of intensity equation for optical path length recovery using partially coherent illumination.Opt. Express21, 14430–14441, https://doi.org/10.1364/OE.21.014430 (2013)..
Davis, T. J. et al. Phase-contrast imaging of weakly absorbing materials using hard X-rays.Nature373, 595–598 (1995)..
Gunjala, G. et al. Extreme ultraviolet microscope characterization using photomask surface roughness.Sci. Rep.10, 11673,https://doi.org/10.1038/s41598-020-68588-w (2020)..
Ishizuka, K.&Allman, B. Phase measurement of atomic resolution image using transport of intensity equation.J. Electron Microsc.54, 191–197 (2005)..
Shanker, A.Differential Methods for Phase Imaging in Optical Lithography. PhD thesis, University of California, Berkeley (2018).
Bouma, B. E. et al. Optical coherence tomography.Nat. Rev. Methods Prim.2, 79, https://doi.org/10.1038/s43586-022-00162-2 (2022)..
Denk, W., Strickler, J. H.&Webb, W. W. Two-photon laser scanning fluorescence microscopy.Science248, 73–76 (1990)..
Seibel, E. J. Medical imaging, diagnosis, and therapy using a scanning single optical fiber system (2005).
Guevara-Torres, A., Williams, D. R.&Schallek, J. B. Origin of cell contrast in offset aperture adaptive optics ophthalmoscopy.Opt. Lett.45, 840–843 (2020)..
Ledwig, P.&Robles, F. E. Epi-mode tomographic quantitative phase imaging in thick scattering samples.Biomed. Opt. Express10, 3605–3621, https://doi.org/10.1364/BOE.10.003605 (2019)..
Ford, T. N., Chu, K. K.&Mertz, J. Phase-gradient microscopy in thick tissue with oblique back-illumination.Nat. Methods9, 1195–1197 (2012)..
Fereidouni, F., Morningstar, T., Abraham, T.&Levenson R. FIBI (fluorescence imitating brightfield imaging) for slide-free rapid histopathology. InBiophotonics Congress: Biomedical Optics 2022 (Translational, Microscopy, OCT, OTS, BRAIN),Technical Digest Series.Paper MW3A. 2 (Optica Publishing Group, 2022)https://meridian.allenpress.com/aplm/article/148/3/345/493208/A-Pilot-Validation-Study-Comparing-Fluorescencehttps://meridian.allenpress.com/aplm/article/148/3/345/493208/A-Pilot-Validation-Study-Comparing-Fluorescence..
Xue, Y., Ren, D.&Waller, L. Three-dimensional bi-functional refractive index and fluorescence microscopy (BRIEF).Biomed. Opt. Express13, 5900–5908, https://doi.org/10.1364/BOE.456621 (2022)..
Chen, X. et al. Artificial confocal microscopy for deep label-free imaging.Nat. Photonics17, 250–258, https://doi.org/10.1038/s41566-022-01140-6 (2023)..
Sun, J. W. et al. Calibration-free quantitative phase imaging in multi-core fiber endoscopes using end-to-end deep learning.Opt. Lett.49, 342–345, https://doi.org/10.1364/OL.509772 (2024)..
Sun, J. W. et al. Quantitative phase imaging through an ultra-thin lensless fiber endoscope.Light Sci. Appl.11, 204 (2022)..
Zhao, M. et al. Phase characterisation of metalenses.Light Sci. Appl.10, 52 (2021)..
Tseng, E. et al. Neural nano-optics for high-quality thin lens imaging.Nat. Commun.12, 6493, https://doi.org/10.1038/s41467-021-26443-0 (2021)..
Ji, A. Q. et al. Quantitative phase contrast imaging with a nonlocal angle-selective metasurface.Nat. Commun.13, 7848, https://doi.org/10.1038/s41467-022-34197-6 (2022)..
Chen, C. et al. Spectral tomographic imaging with aplanatic metalens.Light Sci. Appl.8, 99, https://doi.org/10.1038/s41377-019-0208-0 (2019)..
Engay, E. et al. Polarization-dependent all-dielectric metasurface for single-shot quantitative phase imaging.Nano Lett.21, 3820–3826, https://doi.org/10.1021/acs.nanolett.1c00190 (2021)..
Choi, W. et al. Flexible-type ultrathin holographic endoscope for microscopic imaging of unstained biological tissues.Nat. Commun.13, 4469, https://doi.org/10.1038/s41467-022-32114-5 (2022)..
Monakhova, K. et al. Spectral DiffuserCam: lensless snapshot hyperspectral imaging with a spectral filter array.Optica7, 1298–1307, https://doi.org/10.1364/OPTICA.397214 (2020)..
Waller, L. et al. Phase from chromatic aberrations.Opt. Express18, 22817–22825, https://doi.org/10.1364/OE.18.022817 (2010)..
Bayati, E. et al. Inverse designed extended depth of focus meta-optics for broadband imaging in the visible.Nanophotonics11, 2531–2540, https://doi.org/10.1515/nanoph-2021-0431 (2022)..
Shanker, A. et al. Transport of intensity phase imaging in the presence of curl effects induced by strongly absorbing photomasks.Appl. Opt.53, J1–J6, https://doi.org/10.1364/ao.53.0000j1 (2014)..
Momose, A. et al. Phase tomography by X-ray Talbot interferometry for biological imaging.Jpn. J. Appl. Phys.45, 5254 (2006)..
Ahmad, A. et al. High-throughput spatial sensitive quantitative phase microscopy using low spatial and high temporal coherent illumination.Sci. Rep.11, 15850, https://doi.org/10.1038/s41598-021-94915-w (2021)..
Gul, B. et al. Cell refractive index: models, insights, applications and future perspectives.Photodiagn. Photodyn. Ther.33, 102096, https://doi.org/10.1016/j.pdpdt.2020.102096 (2021)..
Hatton, I. A. et al. The human cell count and size distribution.Proc. Natl Acad. Sci. USA120, e2303077120, https://doi.org/10.1073/pnas.2303077120 (2023)..
Jingshan, Z. et al. Transport of Intensity phase imaging by intensity spectrum fitting of exponentially spaced defocus planes.Opt. Express22, 10661–10674, https://doi.org/10.1364/oe.22.010661 (2014)..
Goodman, J. W.Introduction to Fourier Optics, 3rd edn (Roberts&Co., Greenwood Village, 2005).
Zhu, H. Y. et al. Optical imaging techniques for point-of-care diagnostics.Lab Chip13, 51–67, https://doi.org/10.1039/c2lc40864c (2013)..
Aidukas, T., Loetgering, L.&Harvey, A. R. Addressing phase-curvature in Fourier ptychography.Opt. Express30, 22421–22434, https://doi.org/10.1364/OE.458657 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution