1.The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Centre of Special Optical Fiber Materials and Devices, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, China
2.School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
Zhiguo Xia (xiazg@scut.edu.cn)
Published:31 October 2024,
Published Online:29 August 2024,
Received:29 February 2024,
Revised:15 August 2024,
Accepted:16 August 2024
Scan QR Code
Han, K. et al. Hybrid Eu(Ⅱ)-bromide scintillators with efficient 5d-4f bandgap transition for X-ray imaging. Light: Science & Applications, 13, 2321-2330 (2024).
Han, K. et al. Hybrid Eu(Ⅱ)-bromide scintillators with efficient 5d-4f bandgap transition for X-ray imaging. Light: Science & Applications, 13, 2321-2330 (2024). DOI: 10.1038/s41377-024-01589-w.
Luminescent metal halides are attracting growing attention as scintillators for X-ray imaging in safety inspection
medical diagnosis
etc. Here we present brand-new hybrid Eu(Ⅱ)-bromide scintillators
1D type [Et
4
N
]
EuBr
3
·MeOH and 0D type [Me
4
N
]
6
Eu
5
Br
16
·MeOH
with spin-allowed 5
d
-4
f
bandgap transition emission toward simplified carrier transport during scintillation process. The 1D/0D structures with edge/face -sharing [EuBr
6
]
4−
octahedra further contribute to lowing bandgaps and enhancing quantum confinement effect
enabling efficient scintillation performance (light yield ~73100 ± 800 Ph MeV
−1
detect limit ~18.6 nGy s
−1
X-ray afterglow ~ 1% @ 9.6 μs). We demonstrate the X-ray imaging with 27.3 lp mm
−1
resolution by embedding Eu(Ⅱ)-based scintillators into AAO film. Our results create the new family of low-dimensional rare-
earth-based halides for scintillation and related optoelectronic applications.
Roques-Carmes, C. et al. A framework for scintillation in nanophotonics.Science375, eabm9293 (2022)..
Chen, Q. S. et al. All-inorganic perovskite nanocrystal scintillators.Nature561, 88–93 (2018)..
Orfano, M. et al. Efficient radioactive gas detection by scintillating porous metal–organic frameworks.Nat. Photonics17, 672–678 (2023)..
Perego, J. et al. Composite fast scintillators based on high-Zfluorescent metal–organic framework nanocrystals.Nat. Photonics15, 393–400 (2021)..
Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence.Nat. Photonics15, 187–192 (2021)..
Wang, J. X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators.Nat. Photonics16, 869–875 (2022)..
Ma, W. B. et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging.Nat. Mater.21, 210–216 (2022)..
Zhang, H. et al. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure.Adv. Mater.33, 2102529 (2021)..
Morad, V. et al. Disphenoidal zero-dimensional lead, tin, and germanium halides: highly emissive singlet and triplet self-trapped excitons and X-ray scintillation.J. Am. Chem. Soc.141, 9764–9768 (2019)..
Han, K. et al. Seed-crystal-induced cold sintering toward metal halide transparent ceramic scintillators.Adv. Mater.34, 2110420 (2022)..
Xu, L. J. et al. Highly efficient eco-friendly X-ray scintillators based on an organic manganese halide.Nat. Commun.11, 4329 (2020)..
Zhao, X. et al. Solution-processed hybrid europium (Ⅱ) iodide scintillator for sensitive X-ray detection.Research6, 0125 (2023)..
Akkerman, Q. A.&Manna, L. What defines a halide perovskite?ACS Energy Lett.5, 604–610 (2020)..
Zheng, J. X. et al. Hydrogen-rich 2D halide perovskite scintillators for fast neutron radiography.J. Am. Chem. Soc.143, 21302–21311 (2021)..
He, T. Y. et al. Copper iodide inks for high-resolution X-ray imaging screens.ACS Energy Lett.8, 1362–1370 (2023)..
Jin, T. et al. Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection.Nat. Commun.14, 2808 (2023)..
Yang, B. et al. Lead-free halide Rb2CuBr3as sensitive X-ray scintillator.Adv. Mater.31, 1904711 (2019)..
Han, K. et al. Band alignment engineering inns2electrons doped metal halide perovskites.Laser Photonics Rev.17, 2200458 (2023)..
Gektin, A.&Vasil'ev, A. Scintillation, phonon and defect channel balance; the sources for fundamental yield increase.Funct. Mater.23, 183–190 (2016)..
Dujardin, C. et al. Needs, trends, and advances in inorganic scintillators.IEEE Trans. Nucl. Sci.65, 1977–1997 (2018)..
Zhuravleva, M. et al. Crystal growth and scintillation properties of Cs3CeX6and CsCe2X7(X = Cl, Br).Proceedings of the IEEE Nuclear Science Symposium & Medical Imaging Conference. Knoxville1296–1299 (IEEE, 2010)..
Wu, Y. T. et al. Zero-dimensional Cs4EuX6(X = Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy.J. Mater. Chem. C6, 6647–6655 (2018)..
Dorenbos, P. Relation between Eu2+and Ce3+f↔ d-transition energies in inorganic compounds.J. Phys. Condens. Matter15, 4797–4807 (2003)..
Gong, X. W. et al. Electron–phonon interaction in efficient perovskite blue emitters.Nat. Mater.17, 550–556 (2018)..
Li, M. Z.&Xia, Z. G. Recent progress of zero-dimensional luminescent metal halides.Chem. Soc. Rev.50, 2626–2662 (2021)..
Zhang, M. Y. et al. Oriented-structured CsCu2I3film by close-space sublimation and nanoscale seed screening for high-resolution X-ray imaging.Nano Lett.21, 1392–1399 (2021)..
Cherepy, N. J. et al. Strontium and barium iodide high light yield scintillators.Appl. Phys. Lett.92, 083508 (2008)..
Murray, R. B. Use of Li6I(Eu) as a scintillation detector and spectrometer for fast neutrons.Nucl. Instrum.2, 237–248 (1958)..
Selling, J. et al. Europium-doped barium halide X-ray scintillators.Phys. Status Solidi C.4, 976–979 (2007)..
Choi, D. S. et al. Diamine functionalization of a metal–organic framework by exploiting solvent polarity for enhanced CO2adsorption.ACS Appl. Mater. Interfaces13, 38358–38364 (2021)..
Wang, Z. Y. et al. Color tunable Ba0.79Al10.9O17.14:xEu phosphor prepared in air via valence state control.J. Adv. Ceram.6, 81–89 (2017)..
Nagpure, I. M. Nanoarchitectonics and properties of KMgSO4Cl: Eu phosphor: oxidation state of Eu ion, TL kinetic parameters and fading response.Appl. Phys. A128, 431 (2022)..
Mao, L. L. et al. Structural diversity in white-light-emitting hybrid lead bromide perovskites.J. Am. Chem. Soc.140, 13078–13088 (2018)..
Ke, F. et al. Quasi-one-dimensional metallicity in compressed CsSnI3.J. Am. Chem. Soc.144, 23595–23602 (2022)..
Guan, D. Q. et al. Exceptionally robust face-sharing motifs enable efficient and durable water oxidation.Adv. Mater.33, 2103392 (2021)..
Ye, M. et al. Covalency-driven collapse of strong spin-orbit coupling in face-sharing iridium octahedra.Phys. Rev. B98, 201105 (2018)..
Cui, B. B. et al. Locally collective hydrogen bonding isolates lead octahedra for white emission improvement.Nat. Commun.10, 5190 (2019)..
De Jong, M. et al. Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter.Phys. Chem. Chem. Phys.17, 16959–16969 (2015)..
Dorenbos, P. 5d-level energies of Ce3+and the crystalline environment. Ⅰ. Fluoride compounds.Phys. Rev. B62, 15640–15649 (2000)..
Dorenbos, P. Energy of the first 4f7→4f65dtransition of Eu2+in inorganic compounds.J. Lumin.104, 239–260 (2003)..
Mao, L. L. et al. Design principles for enhancing photoluminescence quantum yield in hybrid manganese bromides.J. Am. Chem. Soc.142, 13582–13589 (2020)..
Meijerink, A., Nuyten, J.&Blasse, G. Luminescence and energy migration in (Sr, Eu)B4O7, a system with a 4f7-4f65dcrossover in the excited state.J. Lumin.44, 19–31 (1989)..
Han, K. et al. Narrow-band green-emitting hybrid organic–inorganic Eu (Ⅱ)-iodides for next-generation micro-LED displays.Adv. Mater.36, 2313247 (2024)..
Dorenbos, P. Thermal quenching of Eu2+5d–4fluminescence in inorganic compounds.J. Phys. Condens. Matter17, 8103–8111 (2005)..
Wei, H. T. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals.Nat. Photonics10, 333–339 (2016)..
Zhu, W. J. et al. Low-dose real-time X-ray imaging with nontoxic double perovskite scintillators.Light Sci. Appl.9, 112 (2020)..
Wu, Y. T. et al. CsI: Tl+, Yb2+: ultra-high light yield scintillator with reduced afterglow.CrystEngComm16, 3312–3317 (2014)..
Lu, L. et al. All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging.Nanoscale Adv.4, 680–696 (2022)..
Su, B. B. et al. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission.Adv. Funct. Mater.31, 2105316 (2021)..
Li, B. Y. et al. Prominent reverse saturable absorption of lead-free two-dimensional organic-inorganic hybrid double perovskites promoted by defects.Mater. Today Phys.38, 101219 (2023)..
Seeman, V. et al. EPR of VHalcentres in SrS.Phys. Status Solidi (B)243, 1978–1982 (2006)..
Sun, Y. N. et al. All-inorganic perovskite quantum dots based on InX3-trioctylphosphine oxide hybrid passivation strategies for high-performance and full-colored light-emitting diodes.ACS Appl. Electron. Mater.3, 415–421 (2021)..
Woo, J. Y. et al. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation.Chem. Mater.29, 7088–7092 (2017)..
Qiao, J. W. et al. Near-infrared light-emitting diodes utilizing a europium-activated calcium oxide phosphor with external quantum efficiency of up to 54.7%.Adv. Mater.34, 2201887 (2022)..
Zhou, X. Q. et al. Interplay of defect levels and rare earth emission centers in multimode luminescent phosphors.Nat. Commun.13, 7589 (2022)..
Sebastian, M. et al. Excitonic emissions and above-band-gap luminescence in the single-crystal perovskite semiconductors CsPbBr3and CsPbCl3.Phys. Rev. B92, 235210 (2015)..
Maddalena, F. et al. Effect of commensurate lithium doping on the scintillation of two-dimensional perovskite crystals.J. Mater. Chem. C9, 2504–2512 (2021)..
Samei, E., Flynn, M. J.&Reimann, D. A. A method for measuring the presampled MTF of digital radiographic systems using an edge test device.Med. Phys.25, 102–113 (1998)..
Wang, Z. H. et al. Needs, trends, and advances in scintillators for radiographic imaging and tomography.IEEE Trans. Nucl. Sci.70, 1244–1280 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution