1.Department of Materials Science and Engineering, Center for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong S.A.R. 999077, China
2.School of Physics and Astronomy, Monash University, Clayton 3800 VIC, Australia
3.Blackett Laboratory, Imperial College London, London SW7 2AZ, UK
Dangyuan Lei (dangylei@cityu.edu.hk)
Published:30 November 2024,
Published Online:10 September 2024,
Scan QR Code
Lei, D. Y, Su, D. & Maier, S. A. New insights into plasmonic hot-electron dynamics. Light: Science & Applications, 13, 2427-2430 (2024).
Lei, D. Y, Su, D. & Maier, S. A. New insights into plasmonic hot-electron dynamics. Light: Science & Applications, 13, 2427-2430 (2024). DOI: 10.1038/s41377-024-01594-z.
Zhu, Y. S. et al. Engineering plasmonic hot carrier dynamics toward efficient photodetection.Appl. Phys. Rev.8, 021305 (2021)..
Gan, X. R.&Lei, D. Y. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes.Coord. Chem. Rev.496, 214665 (2022)..
Ma, X. C. et al. Energy transfer in plasmonic photocatalytic composites.Light Sci. Appl.5, e16017 (2016)..
Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells.Light Sci. Appl.10, 219 (2021)..
Cheng, P. F. et al. New nanophotonics approaches for enhancing the efficiency and stability of perovskite solar cells.Adv. Mater.36, 2309459 (2024)..
Lee, H. et al. Surface plasmon-induced hot carriers: generation, detection, and applications.Acc. Chem. Res.55, 3727–3737 (2022)..
Ho, K. H. W. et al. Plasmonic Au/TiO2-dumbbell-on-film nanocavities for high-efficiency hot-carrier generation and extraction.Adv. Funct. Mater.28, 1800383 (2018)..
Zhang, S. C. et al. Concurrent mechanisms of hot electrons and interfacial water molecule ordering in plasmon-enhanced nitrogen fixation.Adv. Mater.36, 2310776 (2024)..
Liu, D. J. et al. Light-triggered reversible tuning of second-harmonic generation in a photoactive plasmonic molecular nanocavity.Nano Lett.23, 5851–5858 (2023)..
Taghinejad, M. et al. Transient second-order nonlinear media: breaking the spatial symmetry in the time domain via hot-electron transfer.Phys. Rev. Lett.124, 013901 (2020)..
Li, G. C. et al. Plasmonic particle-on-film nanocavities: a versatile platform for plasmon-enhanced spectroscopy and photochemistry.Nanophotonics7, 1865–1889 (2018)..
Baumberg, J. J. et al. Extreme nanophotonics from ultrathin metallic gaps.Nat. Mater.18, 668–678 (2019)..
Khurgin, J. et al. Hot-electron dynamics in plasmonic nanostructures: fundamentals, applications and overlooked aspects.eLight4, 15 (2024)..
Ou, W. H. et al. Plasmoelectric potential in plasmon-mediated electrochemistry.Nano Lett.22, 8397–8405 (2022)..
Bozhevolnyi, S. I.&Khurgin, J. B. Fundamental limitations in spontaneous emission rate of single-photon sources.Optica3, 1418–1421 (2016)..
Khurgin, J. B. Hot carriers generated by plasmons: where are they generated and where do they go from there?Faraday Discuss.214, 35–58 (2019)..
Zha, J. J. et al. Infrared photodetectors based on 2D materials and nanophotonics.Adv. Funct. Mater.32, 2111970 (2022)..
You, H. L. et al. Accelerated pyro-catalytic hydrogen production enabled by plasmonic local heating of Au on pyroelectric BaTiO3nanoparticles.Nat. Commun.13, 6144 (2022)..
Jia, H. P. et al. Plasmonic nanohole arrays with enhanced visible light photoelectrocatalytic activity.ACS Photonics9, 652–663 (2022)..
Yuan, L. et al. Plasmonic photocatalysis with chemically and spatially specific antenna–dual reactor complexes.ACS Nano16, 17365–17375 (2022)..
Herran, M. et al. Tailoring plasmonic bimetallic nanocatalysts toward sunlight‐driven H2production.Adv. Funct. Mater.32, 2203418 (2022)..
Bykov, A. Y. et al. Time-dependent ultrafast quadratic nonlinearity in an epsilon-near-zero platform.Nano Lett.24, 3744–3749 (2024)..
Peng, Z. W., Lo, T. W.&Lei, D. Plasmonic-hot-electron mediated room-temperature generation of charged biexciton in monolayer WS2.Phys. Rev. Mater.7, 054002 (2023)..
Huang, X. Y. et al. Efficient plasmon-hot electron conversion in Ag–CsPbBr3hybrid nanocrystals.Nat. Commun.10, 1163 (2019)..
Guan, Z. Z. et al. Electric field induced out-of-plane second-order optical nonlinearity in monolayer transition metal dichalcogenides.Phys. Rev. B109, 075417 (2024)..
Wen, X. L. et al. Plasmonic hot carriers-controlled second harmonic generation in WSe2bilayers.Nano Lett.18, 1686–1692 (2018)..
Li, G. C. et al. Metal-substrate-mediated plasmon hybridization in a nanoparticle dimer for photoluminescence line-width shrinking and intensity enhancement.ACS Nano11, 3067–3080 (2017)..
Gao, H. et al. Selective excitation of polarization-steered chiral photoluminescence in single plasmonic nanohelicoids.Adv. Funct. Mater.31, 2101502 (2021)..
Un, I. W., Sarkar, S.&Sivan, Y. Electronic-based model of the optical nonlinearity of low-electron-density Drude materials.Phys. Rev. Appl.19, 044043 (2023)..
Lin, L. et al. Electron transport across plasmonic molecular nanogaps interrogated with surface-enhanced Raman scattering.ACS Nano12, 6492–6503 (2018)..
Zhang, Q. et al. Electron energy-loss spectroscopy of spatial nonlocality and quantum tunneling effects in the bright and dark plasmon modes of gold nanosphere dimers.Adv. Quantum Technol.1, 1800016 (2018)..
Zhang, Q. et al. Probing electron transport in plasmonic molecular junctions with two-photon luminescence spectroscopy.Nanophotonics10, 2467–2479 (2021)..
Han, S. et al. Optical and charge transport characteristics of photoswitching plasmonic molecular systems.Prog. Quantum Electron.95, 100517 (2024)..
Ou, W. H. et al. Thermal and nonthermal effects in plasmon-mediated electrochemistry at nanostructured Ag electrodes.Angew. Chem. Int. Ed.59, 6790–6793 (2020)..
Wong, Y. L. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes.Nanoscale13, 2792–2800 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution