1.Institute of Atomic and Molecular Physics, and Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
2.School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
3.Hefei National Laboratory, and Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, University of Science and Technology of China, Hefei 230026, China
4.Center for Theoretical Physics, Hainan University, Haikou 570228, China
Chuncheng Wang (ccwang@jlu.edu.cn)
Xiaohong Song (song_xiaohong@hainanu.edu.cn)
Weifeng Yang (wfyang@hainanu.edu.cn)
Dajun Ding (dajund@jlu.edu.cn)
Published:30 November 2024,
Published Online:11 September 2024,
Received:07 December 2023,
Revised:09 August 2024,
Accepted:21 August 2024
Scan QR Code
Li, X. K. et al. Coulomb focusing in attosecond angular streaking. Light: Science & Applications, 13, 2611-2619 (2024).
Li, X. K. et al. Coulomb focusing in attosecond angular streaking. Light: Science & Applications, 13, 2611-2619 (2024). DOI: 10.1038/s41377-024-01600-4.
Angular streaking technique employs a close-to-circularly polarized laser pulse to build a mapping between the instant of maximum ionization and the most probable emission angle in the photoelectron momentum distribution
thereby enabling the probe of laser-induced electron dynamics in atoms and molecules with attosecond temporal resolution. Here
through the jointed experimental observations and improved Coulomb-corrected strong-field approximation statistical simulations
we identify that electrons emitted at different initial ionization times converge to the most probable emission angle due to the previously-unexpected Coulomb focusing triggered by the nonadiabatic laser-induced electron tunneling. We reveal that the Coulomb focusing induces the observed nonintuitive energy-dependent trend in the angular streaking measurements on the nonadiabatic tunneling
and that tunneling dynamics under the classically forbidden barrier can leave fingerprints on the resulting signals. Our findings have significant implications for the decoding of the intricate tunneling dynamics with attosecond angular streaking.
Hentschel, M. et al. Attosecond metrology.Nature414, 509–513 (2001)..
Remetter, T. et al. Attosecond electron wave packet interferometry.Nat. Phys.2, 323–326 (2006)..
Paul, P. M. et al. Observation of a train of attosecond pulses from high harmonic generation.Science292, 1689–1692 (2001)..
Eckle, P. et al. Attosecond angular streaking.Nat. Phys.4, 565–570 (2008)..
Eckle, P. et al. Attosecond ionization and tunneling delay time measurements in helium.Science322, 1525–1529 (2008)..
Han, M. et al. Complete characterization of sub-coulomb-barrier tunnelling with phase-of-phase attoclock.Nat. Photonics15, 765–771 (2021)..
Ueda, K.&Ishikawa, K. L. Attoclocks play devil's advocate.Nat. Phys.7, 371–372 (2011)..
Yu, M. et al. Full experimental determination of tunneling time with attosecond-scale streaking method.Light Sci. Appl.11, 215 (2022)..
Nisoli, M. The birth of attochemistry.Opt. Photonics N.30, 32–39 (2019)..
Krausz, F.&Stockman, M. I. Attosecond metrology: from electron capture to future signalprocessing.Nat. Photonics8, 205–213 (2014)..
Krausz, F.&Ivanov, M. Attosecond physics.Rev. Mod. Phys.81, 163–234 (2009)..
He, P. L., Ruiz, C.&He, F. Carrier-envelope-phase characterization for an isolated attosecond pulse by angular streaking.Phys. Rev. Lett.116, 203601 (2016)..
Sainadh, U. S. et al. Attosecond angular streaking and tunnelling time in atomic hydrogen.Nature568, 75–77 (2019)..
Camus, N. et al. Experimental evidence for quantum tunneling time.Phys. Rev. Lett.119, 023201 (2017)..
Landsman, A. S. et al. Ultrafast resolution of tunneling delay time.Optica1, 343–349 (2014)..
Torlina, L. et al. Interpreting attoclock measurements of tunnelling times.Nat. Phys.11, 503–508 (2015)..
Zimmermann, T. et al. Tunneling time and weak measurement in strong field ionization.Phys. Rev. Lett.116, 233603 (2016)..
Klaiber, M., Hatsagortsyan, K. Z.&Keitel, C. H. Tunneling dynamics in multiphoton ionization and attoclock calibration.Phys. Rev. Lett.114, 083001 (2015)..
Hofmann, C., Landsman, A. S.&Keller, U. Attoclock revisited on electron tunnelling time.J. Mod. Opt.66, 1052–1070 (2019)..
Han, M. et al. Unifying tunneling pictures of strong-field ionization with an improved attoclock.Phys. Rev. Lett.123, 073201 (2019)..
Trabert, D. et al. Nonadiabatic strong field ionization of atomic hydrogen.Phys. Rev. Lett.127, 273201 (2021)..
Pfeiffer, A. N. et al. Attoclock reveals natural coordinates of the laser-induced tunnelling current flow in atoms.Nat. Phys.8, 76–80 (2012)..
Pfeiffer, A. N. et al. Probing the longitudinal momentum spread of the electron wave packet at the tunnel exit.Phys. Rev. Lett.109, 083002 (2012)..
Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a 'momentum microscope' to view atomic collision dynamics.Phys. Rep.330, 95–192 (2000)..
Ullrich, J. et al. Recoil-ion and electron momentum spectroscopy: reaction-microscopes.Rep. Prog. Phys.66, 1463–1545 (2003)..
Wang, C. C. et al. Accurate in situ measurement of ellipticity based on subcycle ionization dynamics.Phys. Rev. Lett.122, 013203 (2019)..
Yudin, G. L.&Ivanov, M. Y. Nonadiabatic tunnel ionization: looking inside a laser cycle.Phys. Rev. A64, 013409 (2001)..
Boge, R. et al. Probing nonadiabatic effects in strong-field tunnel ionization.Phys. Rev. Lett.111, 103003 (2013)..
Mosert, V.&Bauer, D. Photoelectron spectra with QPROPand t-SURFF.Comput. Phys. Commun.207, 452–463 (2016)..
Tulsky, V.&Bauer, D. QPROPwith faster calculation of photoelectron spectra.Comput. Phys. Commun.251, 107098 (2020)..
Feynman, R. P. Space-time approach to non-relativistic quantum mechanics.Rev. Mod. Phys.20, 367–387 (1948)..
Feynman, R. P.&Hibbs, A. R.Quantum Mechanics and Path Integrals(Dover Publications, Inc., 2005).
Gong, X. C. et al. Energy-resolved ultrashort delays of photoelectron emission clocked by orthogonal two-color laser fields.Phys. Rev. Lett.118, 143203 (2017)..
Song, X. H. et al. Attosecond time delay of retrapped resonant ionization.Phys. Rev. Lett.121, 103201 (2018)..
Tong, J. H. et al. Probing resonant photoionization time delay by self-referenced molecular attoclock.Phys. Rev. Lett.129, 173201 (2022)..
Liu, X. W. et al. Deep learning for Feynman's path integral in strong-field time-dependent dynamics.Phys. Rev. Lett.124, 113202 (2020)..
Zhu, M. et al. Tunnelling of electrons via the neighboring atom.Light Sci. Appl.13, 18 (2024)..
Liu, K. L. et al. Detecting and characterizing the nonadiabaticity of laser-induced quantum tunneling.Phys. Rev. Lett.122, 053202 (2019)..
Pfeiffer, A. N. et al. Recent attoclock measurements of strong field ionization.Chem. Phys.414, 84–91 (2013)..
Shafir, D. et al. Trajectory-resolved coulomb focusing in tunnel ionization of atoms with intense, elliptically polarized laser pulses.Phys. Rev. Lett.111, 023005 (2013)..
Huppert, M. et al. Attosecond delays in molecular photoionization.Phys. Rev. Lett.117, 093001 (2016)..
Jordan, I. et al. Attosecond spectroscopy of liquid water.Science369, 974–979 (2020)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution