1.National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
2.School of Physical Science and Technology & Jiangsu key Laboratory of Frontier Material Physics and Devices, Soochow University, Suzhou 215006, China
3.School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
4.College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
5.College for Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, Hunan 410073, China
Jie Luo (luojie@suda.edu.cn)
Hongqiang Li (hqlee@tongji.edu.cn)
Yun Lai (laiyun@nju.edu.cn)
Published:30 November 2024,
Published Online:20 September 2024,
Received:04 March 2024,
Revised:13 August 2024,
Accepted:25 August 2024
Scan QR Code
Luo, H. et al. Dielectric metamaterials with effective self-duality and full-polarization omnidirectional brewster effect. Light: Science & Applications, 13, 2680-2687 (2024).
Luo, H. et al. Dielectric metamaterials with effective self-duality and full-polarization omnidirectional brewster effect. Light: Science & Applications, 13, 2680-2687 (2024). DOI: 10.1038/s41377-024-01605-z.
Conventional dielectric solid materials
both natural and artificial
lack electromagnetic self-duality and thus require additional coatings to achieve impedance matching with free space. Here
we present a class of dielectric metamaterials that are effectively self-dual and vacuum-like
thereby exhibiting full-polarization omnidirectional impedance matching as an unusual Brewster effect extended across all incident angles and polarizations. With both birefringence and reflection eliminated regardless of wavefront and polarization
such anisotropic metamaterials could establish the electromagnetic equivalence with "stretched free space" in transformation optics
as substantiated through full-wave simulations and microwave experiments. Our findings open a practical pathway for realizing unprecedented polarization-independence and omnidirectional impedance-matching characteristics in pure dielectric solids.
Jackson, J. D.Classical Electrodynamics3rd edn, Vol. 832 (New York: Wiley, 2001).
Huang, K.Fundamental Forces of Nature: The Story of Gauge FieldsIllustrated edn (London: World Scientific, 2007).
Born, M.&Wolf, E.Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light6th edn, Vol. 808 (New York: Pergamon Press, 1980).
Kerker, M., Wang, D. S.&Giles, C. L. Electromagnetic scattering by magnetic spheres.J. Opt. Soc. Am.73, 765–767 (1983)..
Fernandez-Corbaton, I. et al. Electromagnetic duality symmetry and helicity conservation for the macroscopic Maxwell's equations.Phys. Rev. Lett.111, 060401 (2013)..
Mohammadi Estakhri, N., Engheta, N.&Kastner, R. Electromagnetic funnel: reflectionless transmission and guiding of waves through subwavelength apertures.Phys. Rev. Lett.124, 033901 (2020)..
Fernandez-Corbaton, I., Fruhnert, M.&Rockstuhl, C. Dual and chiral objects for optical activity in general scattering directions.ACS Photon.2, 376–384 (2015)..
Zambrana-Puyalto, X. et al. Duality symmetry and Kerker conditions.Opt. Lett.38, 1857–1859 (2013)..
Schmidt, M. K. et al. Isotropically polarized speckle patterns.Phys. Rev. Lett.114, 113902 (2015)..
Neugebauer, M. et al. Polarization-controlled directional scattering for nanoscopic position sensing.Nat. Commun.7, 11286 (2016)..
Liu, W.&Kivshar, Y. S. Generalized Kerker effects in nanophotonics and meta-optics [Invited].Opt. Express26, 13085–13105 (2018)..
Yang, Q. D. et al. Scattering and absorption invariance of nonmagnetic particles under duality transformations.Phys. Rev. A102, 033517 (2020)..
Yang, Q. D. et al. Scattering invariance for arbitrary polarizations protected by joint spatial-duality symmetries.Phys. Rev. B102, 155427 (2020)..
Decker, M. et al. High-efficiency dielectric Huygens' surfaces.Adv. Opt. Mater.3, 813–820 (2015)..
Chong, K. E. et al. Efficient polarization-insensitive complex wavefront control using Huygens' metasurfaces based on dielectric resonant meta-atoms.ACS Photon.3, 514–519 (2016)..
Rahimzadegan, A. et al. Beyond dipolar Huygens' metasurfaces for full-phase coverage and unity transmittance.Nanophotonics9, 75–82 (2020)..
Rahimzadegan, A., Rockstuhl, C.&Fernandez-Corbaton, I. Core-shell particles as building blocks for systems with high duality symmetry.Phys. Rev. Appl.9, 054051 (2018)..
Guo, J. J. et al. Electromagnetically large cylinders with duality symmetry by hybrid neural networks.Opt. Laser Technol.168, 109935 (2024)..
Jahani, S.&Jacob, Z. All-dielectric metamaterials.Nat. Nanotechnol.11,23–36 (2016)..
Huang, X. Q. et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.Nat. Mater.10, 582–586 (2011)..
Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial.Nat. Photon.7, 791–795 (2013)..
Li, Y., Chan, C. T.&Mazur, E. Dirac-like cone-based electromagnetic zero-index metamaterials.Light Sci. Appl.10, 203 (2021)..
Im, K., Kang, J. H.&Park, Q. H. Universal impedance matching and the perfect transmission of white light.Nat. Photon.12, 143–149 (2018)..
Horsley,S. A. R., Artoni, M.&La Rocca, G. C. Spatial Kramers–Kronig relations and the reflection of waves.Nat. Photon.9, 436–439 (2015)..
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Kivshar, Y. All-dielectric meta-optics and non-linear nanophotonics.Natl Sci. Rev.5, 144–158 (2018)..
He, Q. et al. Optic-null medium: realization and applications.Opt. Express21, 28948–28959 (2013)..
Pendry, J. B., Schurig, D.&Smith, D. R. Controlling electromagnetic fields.Science312, 1780–1782 (2006)..
Luo, J. et al. Ultratransparent media and transformation optics with shifted spatial dispersions.Phys. Rev. Lett.117, 223901 (2016)..
McCall, M. et al. Roadmap on transformation optics.J. Opt.20, 063001 (2018)..
Thelen, A. Equivalent layers in multilayer filters.J. Opt. Soc. Am.56, 1533–1538 (1966)..
Huang, M., Li, X.&Luo, J. All-dielectric unidirectional complementary media for transmission enhancement.Opt. Express28, 33263–33273 (2020)..
Sipe, J. E. et al. Brewster anomalies: a polarization-induced delocalization effect.Phys. Rev. Lett.60, 108–111 (1988)..
Shen, Y. C. et al. Optical broadband angular selectivity.Science343, 1499–1501 (2014)..
Luo, J. et al. Oblique total transmissions through epsilon-near-zero metamaterials with hyperbolic dispersions.Europhys. Lett.101, 44001 (2013)..
Berreman, D. W. Optics in stratified and anisotropic media: 4×4-matrix formulation.J. Opt. Soc. Am.62, 502–510 (1972)..
Markel, V. A. Introduction to the Maxwell Garnett approximation: tutorial.J. Opt. Soc. Am. A33, 1244–1256 (2016)..
Li, S. S. et al. Observation of wide-angle impedance matching in terahertz photonic crystals.New J. Phys.22, 023033 (2020)..
Tamayama, Y. et al. Observation of Brewster's effect for transverse-electric electromagnetic waves in metamaterials: experiment and theory.Phys. Rev. B73, 193104 (2006)..
Song, T. T. et al. Ultracompact photonic circuits without cladding layers.Phys. Rev. X12, 011053 (2022)..
Paniagua-Domínguez, R. et al. Generalized Brewster effect in dielectric metasurfaces.Nat. Commun.7, 10362 (2016)..
Sreekanth, K. V. et al. Generalized Brewster angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing.ACS Photon.6, 1610–1617 (2019)..
Lavigne, G.&Caloz, C. Generalized Brewster effect using bianisotropic metasurfaces.Opt. Express29, 11361–11370 (2021)..
Chen, Z. F. et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation.Nat. Commun.9, 4909 (2018)..
Lv, Q. H. et al. Ultrawide-angle ultralow-reflection phenomenon for transverse electric mode in anisotropic metasurface.Adv. Opt. Mater.10, 2102400 (2022)..
Huang, X. R., Peng, R. W.&Fan, R. H. Making metals transparent for white light by spoof surface plasmons.Phys. Rev. Lett.105, 243901 (2010)..
Alù, A. et al. Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings.Phys. Rev. Lett.106, 123902 (2011)..
Aközbek, N. et al. Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave.Phys. Rev. B85, 205430 (2012)..
Fan, R. H. et al. Transparent metals for ultrabroadband electromagnetic waves.Adv. Mater.24, 1980–1986 (2012)..
Luo, J. et al. Ultra-broadband reflectionless Brewster absorber protected by reciprocity.Light Sci. Appl.10, 89 (2021)..
Fan, H. Y. et al. Optical Brewster metasurfaces exhibiting ultrabroadband reflectionless absorption and extreme angular asymmetry.Phys. Rev. Appl.16, 044064 (2021)..
Fan, H. Y. et al. Brewster metasurfaces for ultrabroadband reflectionless absorption at grazing incidence.Optica9, 1138–1148 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution