1.State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
Shaoping Shi (ssp4208@sxu.edu.cn)
Yaohui Zheng (yhzheng@sxu.edu.cn)
Published:31 December 2024,
Published Online:17 October 2024,
Received:06 April 2024,
Revised:22 August 2024,
Accepted:26 August 2024
Scan QR Code
Gao, L. et al. Generation of squeezed vacuum state in the millihertz frequency band. Light: Science & Applications, 13, 3109-3116 (2024).
Gao, L. et al. Generation of squeezed vacuum state in the millihertz frequency band. Light: Science & Applications, 13, 3109-3116 (2024). DOI: 10.1038/s41377-024-01606-y.
The detection of gravitational waves has ushered in a new era of observing the universe. Quantum resource advantages offer significant enhancements to the sensitivity of gravitational wave observatories. While squeezed states for ground-based gravitational wave detection have received marked attention
the generation of squeezed states suitable for mid-to-low-frequency detection has remained unexplored. To address the gap in squeezed state optical fields at ultra-low frequencies
we report on the first direct observation of a squeezed vacuum field until Fourier frequency of 4 millihertz with the quantum noise reduction of up to 8.0 dB
by the employment of a multiple noise suppression scheme. Our work provides quantum resources for future gravitational wave observatories
facilitating the development of quantum precision measurement.
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger.Phys. Rev. Lett.116, 061102 (2016)..
Vitale, S. The first 5 years of gravitational-wave astrophysics.Science372, eabc7397 (2021)..
Li, W. Z. et al. Harmonics-assisted optical phase amplifier.Light Sci. Appl.11, 312 (2022)..
Ortolano, G. et al. Quantum enhanced non-interferometric quantitative phase imaging.Light Sci. Appl.12, 171 (2023)..
Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector.Classical Quantum Gravity32, 024001 (2015)..
The LIGO Scientific Collaboration. et al. Advanced LIGO.Classical Quantum Gravity32, 074001 (2015)..
Capocasa, E. et al. Estimation of losses in a 300 m filter cavity and quantum noise reduction in the KAGRA gravitational-wave detector.Phys. Rev. D.93, 082004 (2016)..
Dooley, K. L. et al. GEO 600 and the GEO-HF upgrade program: successes and challenges.Classical Quantum Gravity33, 075009 (2016)..
The LIGO Scientific Collaboration. Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light.Nat. Photonics7, 613–619 (2013)..
Tse, M. et al. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy.Phys. Rev. Lett.123, 231107 (2019)..
Acernese, F. et al. Increasing the astrophysical reach of the advanced Virgo detector via the application of squeezed vacuum states of light.Phys. Rev. Lett.123, 231108 (2019)..
Korobko, M. et al. Quantum expander for gravitational-wave observatories.Light Sci. Appl.8, 118 (2019)..
Zhao, Y. H. et al. Frequency-dependent squeezed vacuum source for broadband quantum noise reduction in advanced gravitational-wave detectors.Phys. Rev. Lett.124, 171101 (2020)..
Lough, J. et al. First Demonstration of 6 dB quantum noise reduction in a kilometer scale gravitational wave observatory.Phys. Rev. Lett.126, 041102 (2021)..
Sathyaprakash, B. Corrigendum: scientific objectives of Einstein telescope.Classical Quantum Gravity30, 079501 (2013)..
Reitze, D. et al. Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO.Bull. Am. Astronomical Soc.51, 35 (2019)..
Amaro-Seoane, P. et al. Laser interferometer space antenna. Preprint athttps://doi.org/10.48550/arXiv.1702.00786https://doi.org/10.48550/arXiv.1702.00786(2017).
Wang, H. T. et al. Science with the TianQin observatory: preliminary results on massive black hole binaries.Phys. Rev. D.100, 043003 (2019)..
Danilishin, S. L. et al. A new quantum speed-meter interferometer: measuring speed to search for intermediate mass black holes.Light Sci. Appl.7, 11 (2018)..
Kuns, K. A. et al. Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGo.Phys. Rev. D.102, 043001 (2020)..
Jani, K.&Loeb, A. Gravitational-wave Lunar observatory for cosmology.J. Cosmol. Astropart. Phys.2021, 044 (2021)..
Harms, J. et al. Low-frequency terrestrial gravitational-wave detectors.Phys. Rev. D.88, 122003 (2013)..
Slusher, R. E. et al. Observation of squeezed states generated by four-wave mixing in an optical cavity.Phys. Rev. Lett.55, 2409–2412 (1985)..
Schneider, K. et al. Generation of strongly squeezed continuous-wave light at 1064 nm.Opt. Express2, 59–64 (1998)..
Vahlbruch, H. et al. Observation of squeezed light with 10-dB quantum-noise reduction.Phys. Rev. Lett.100, 033602 (2008)..
Vahlbruch, H. et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency.Phys. Rev. Lett.117, 110801 (2016)..
Eberle, T. et al. Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection.Phys. Rev. Lett.104, 251102 (2010)..
Khalaidovski, A. et al. Long-term stable squeezed vacuum state of light for gravitational wave detectors.Classical Quantum Gravity29, 075001 (2012)..
Chua, S. S. Y. et al. Backscatter tolerant squeezed light source for advanced gravitational-wave detectors.Opt. Lett.36, 4680–4682 (2011)..
Vahlbruch, H. et al. Coherent control of vacuum squeezing in the gravitational-wave detection band.Phys. Rev. Lett.97, 011101 (2006)..
Grote, H. et al. First long-term application of squeezed states of light in a gravitational-wave observatory.Phys. Rev. Lett.110, 181101 (2013)..
Oelker, E. et al. Ultra-low phase noise squeezed vacuum source for gravitational wave detectors.Optica3, 682–685 (2016)..
Takeno, Y. et al. Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement.Opt. Express15, 4321–4327 (2007)..
Wu, M. C. et al. Twin-beam intensity-difference squeezing below 10 Hz.Opt. Express27, 4769–4780 (2019)..
de Araujo, L. E. E. et al. Characterizing two-mode-squeezed light from four-wave mixing in rubidium vapor for quantum sensing and information processing.Opt. Express32, 1305–1313 (2024)..
Sun, X. C. et al. Dependence of the squeezing and anti-squeezing factors of bright squeezed light on the seed beam power and pump beam noise.Opt. Lett.44, 1789–1792 (2019)..
McKenzie, K. et al. Squeezing in the audio gravitational-wave detection band.Phys. Rev. Lett.93, 161105 (2004)..
Vahlbruch, H. et al. Quantum engineering of squeezed states for quantum communication and metrology.N. J. Phys.9, 371 (2007)..
Mehmet, M.&Vahlbruch, H. High-efficiency squeezed light generation for gravitational wave detectors.Classical Quantum Gravity36, 015014 (2019)..
Mehmet, M.&Vahlbruch, H. The squeezed light source for the Advanced Virgo detector in the observation run O3.Galaxies8, 79 (2020)..
Meylahn, F., Willke, B.&Vahlbruch, H. Squeezed states of light for future gravitational wave detectors at a wavelength of 1550 nm.Phys. Rev. Lett.129, 121103 (2022)..
Stefszky, M. S. et al. Balanced homodyne detection of optical quantum states at audio-band frequencies and below.Classical Quantum Gravity29, 145015 (2012)..
Sayeh, M. R., Bilger, H. R.&Habib, T. Optical resonator with an external source: excitation of the Hermite-Gaussian modes.Appl. Opt.24, 3756–3761 (1985)..
Song, S. M., Hu, C. H.&Yan, C. X. Optical axis maladjustment sensitivity in a triangular ring resonator.Appl. Opt.58, 29–36 (2019)..
Sun, Y. et al. Squeezing level strengthened by a temperature dependent dispersion compensation methodology.Opt. Commun.530, 129192 (2023)..
Schönbeck, A., Thies, F.&Schnabel, R. 13 dB squeezed vacuum states at 1550 nm from 12 mW external pump power at 775 nm.Opt. Lett.43, 110–113 (2018)..
Zhang, W. H. et al. Optimization of the squeezing factor by temperature-dependent phase shift compensation in a doubly resonant optical parametric oscillator.Appl. Phys. Lett.115, 171103 (2019)..
Yang, W. H. et al. Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations.Opt. Lett.42, 4553–4556 (2017)..
Shi, S. P. et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption.Opt. Lett.43, 5411–5414 (2018)..
Goto, H., Nakamura, S.&Ichimura, K. Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+: Y2SiO5.Opt. Express18, 23763–23775 (2010)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution