1.Electronic Information School, and School of Microelectronics, Wuhan University, Wuhan 430072, China
2.NUS Graduate School, National University of Singapore, Singapore 119077, Singapore
3.Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
4.National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, and College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
5.Peng Cheng Laboratory, Shenzhen 518055, China
6.New Cornerstone Science Laboratory, Department of Physics, University of Hong Kong, Hong Kong, China
7.Department of Electrical and Electronic Engineering, University of Hong Kong, Hong Kong, China
8.Wuhan Institute of Quantum Technology, Wuhan 430206, China
Zile Li (lizile@whu.edu.cn)
Peng Chen (chenpeng@nju.edu.cn)
Guoxing Zheng (gxzheng@whu.edu.cn)
Published:30 November 2024,
Published Online:09 September 2024,
Received:18 March 2024,
Revised:12 August 2024,
Accepted:26 August 2024
Scan QR Code
Zhou, Z. et al. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Light: Science & Applications, 13, 2589-2598 (2024).
Zhou, Z. et al. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging. Light: Science & Applications, 13, 2589-2598 (2024). DOI: 10.1038/s41377-024-01608-w.
Conventional hyperspectral cameras cascade lenses and spectrometers to acquire the spectral datacube
which forms the fundamental framework for hyperspectral imaging. However
this cascading framework involves tradeoffs among spectral and imaging performances when the system is driven toward miniaturization. Here
we propose a spectral singlet lens that unifies optical imaging and computational spectrometry functions
enabling the creation of minimalist
miniaturized and high-performance hyperspectral cameras. As a paradigm
we capitalize on planar liquid crystal optics to implement the proposed framework
with each liquid-crystal unit cell acting as both phase modulator and electrically tunable spectral filter. Experiments with various targets show that the resulting millimeter-scale hyperspectral camera exhibits both high spectral fidelity (> 95%) and high spatial resolutions (~1.7 times the diffraction limit). The proposed "two-in-one" framework can resolve the conflicts between spectral and imaging resolutions
which paves a practical pathway for advancing hyperspectral imaging systems toward miniaturization and portable applications.
Gutzler, R. et al. Light–matter interaction at atomic scales.Nat. Rev. Phys.3, 441–453 (2021)..
Wang, X. et al. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy.Nat. Rev. Phys.2, 253–271 (2020)..
Li, Q. L. et al. Review of spectral imaging technology in biomedical engineering: achievements and challenges.J. Biomed. Opt.18, 100901 (2013)..
Shaw, G. A.&Burke, H. H. K. Spectral imaging for remote sensing.Linc. Lab. J.14, 3–28 (2003)..
Bao, J.&Bawendi, M. G. A colloidal quantum dot spectrometer.Nature523, 67–70 (2015)..
Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs.Nat. Commun.10, 1020 (2019)..
Yang, Z. Y. et al. Single-nanowire spectrometers.Science365, 1017–1020 (2019)..
Kong, L. D. et al. Single-detector spectrometer using a superconducting nanowire.Nano Lett.21, 9625–9632 (2021)..
Yuan, S. F. et al. Awavelength-scale black phosphorus spectrometer.Nat. Photonics15, 601–607 (2021)..
Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces.Optica9, 461–468 (2022)..
Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces.Science360, 1105–1109 (2018)..
Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces.Nat. Photonics13, 390–396 (2019)..
Ni, Y. B. et al. Computational spectropolarimetry with a tunable liquid crystal metasurface.eLight2, 23 (2022)..
Cai, G. Y. et al. Compact angle-resolved metasurface spectrometer.Nat. Mater.23, 71–78 (2024)..
Wang, R. X. et al. Compact multi-foci metalens spectrometer.Light Sci. Appl.12, 103 (2023)..
McClung, A. et al. Snapshot spectral imaging with parallel metasystems.Sci. Adv.6, eabc7646 (2020)..
Guo, L. Q. et al. A single-dot perovskite spectrometer.Adv. Mater.34, 2200221 (2022)..
Deng, W. J. et al. Electrically tunable two-dimensional heterojunctions for miniaturized near-infrared spectrometers.Nat. Commun.13, 4627 (2022)..
Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction.Science378, 296–299 (2022)..
Oiknine, Y. et al. Compressive sensing resonator spectroscopy.Opt. Lett.42, 25–28 (2017)..
Yako, M. et al. Video-rate hyperspectral camera based on a CMOS-compatible random array of Fabry–Pérot filters.Nat. Photonics17, 218–223 (2023)..
Zhang, W. H. et al. Handheld snapshot multi-spectral camera at tens-of-megapixel resolution.Nat. Commun.14, 5043 (2023)..
Li, Y. H. et al. A platform for integrated spectrometers based on solution-processable semiconductors.Light Sci. Appl.12, 184 (2023)..
Lang, Z. T., Qiao, S. D.&Ma, Y. F. Fabry Pérot–based phase demodulation of heterodyne light-induced thermoelastic spectroscopy.Light.: Adv. Manuf.4, 23 (2023)..
Li, L. L. et al. Intelligent metasurfaces: control, communication and computing.eLight2, 7 (2022)..
Yang, Z. Y. et al. Miniaturization of optical spectrometers.Science371, eabe0722 (2021)..
Yuan, S. F. et al. Geometric deep optical sensing.Science379, eade1220 (2023)..
Yang, Y. et al. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform.Light Sci. Appl.12, 152 (2023)..
Jeon, D. S. et al. Compact snapshot hyperspectral imaging with diffracted rotation.ACM Trans. Graph. (TOG)38, 117 (2019)..
Hua, X. et al. Ultra-compact snapshot spectral light-field imaging.Nat. Commun.13, 2732 (2022)..
Chen, H. W. et al. Liquid crystal display and organic light-emitting diode display: present status and future perspectives.Light Sci. Appl.7, 17168 (2018)..
Johnson, K. M., McKnight, D. J.&Underwood, I. Smart spatial light modulators using liquid crystals on silicon.IEEE J. Quantum Electron.29, 699–714 (1993)..
Guo, Y. B. et al. High-resolution and high-throughput plasmonic photopatterning of complex molecular orientations in liquid crystals.Adv. Mater.28, 2353–2358 (2016)..
Chen, P. et al. Liquid-crystal-mediated geometric phase: from transmissive to broadband reflective planar optics.Adv. Mater.32, 1903665 (2020)..
Xiong, J. H.&Wu, S. T. Planar liquid crystal polarization optics for augmented reality and virtual reality: from fundamentals to applications.eLight1, 3 (2021)..
Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency.Nat. Nanotechnol.10, 308–312 (2015)..
Wang, S. M. et al. Broadband achromatic optical metasurface devices.Nat. Commun.8, 187 (2017)..
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible.Nat. Mater.22, 474–481 (2023)..
Zhu, L. et al. Pancharatnam–berry phase reversal via opposite-chirality-coexisted superstructures.Light Sci. Appl.11, 135 (2022)..
Oiknine, Y. et al. Compressive sensing hyperspectral imaging by spectral multiplexing with liquid crystal.J. Imaging5, 3 (2018)..
Badloe, T. et al. Electrically tunable bifocal metalens with diffraction-limited focusing and imaging at visible wavelengths.Adv. Sci.8, 2102646 (2021)..
Badloe, T. et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens.ACS Nano17, 14678–14685 (2023)..
Chen, K. X. et al. Multifunctional liquid crystal device for grayscale pattern display and holography with tunable spectral-response.Laser Photonics Rev.16, 2100591 (2022)..
Colburn, S., Zhan, A. L.&Majumdar, A. Metasurface optics for full-color computational imaging.Sci. Adv.4, eaar2114 (2018)..
Barulin, A. et al. Dual-wavelength metalens enables Epi-fluorescence detection from single molecules.Nat. Commun.15, 26 (2024)..
Amosova, L. P. et al. Ways of increasing the response rate of electrically controlled optical devices based on nematic liquid crystals.J. Optical Technol.77, 79–87 (2010)..
Huang, L. Q. et al. Spectral imaging with deep learning.Light Sci. Appl.11, 61 (2022)..
Zhang, W. Y. et al. Deeply learned broadband encoding stochastic hyperspectral imaging.Light Sci. Appl.10, 108 (2021)..
Chen, Z. G.&Segev, M. Highlighting photonics: looking into the next decade.eLight1, 2 (2021)..
Sitzmann, V. et al. End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging.ACM Trans. Graph. (TOG)37, 114 (2018)..
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
So, S. et al. Revisiting the design strategies for metasurfaces: fundamental physics, optimization, and beyond.Adv. Mater.35, 2206399 (2023)..
Kim, J. et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review.Adv. Photonics4, 024001 (2022)..
Li, C. et al. Arbitrarily structured quantum emission with a multifunctional metalens.eLight3, 19 (2023)..
Feng, Z. W. et al. Dual-band polarized upconversion photoluminescence enhanced by resonant dielectric metasurfaces.eLight3, 21 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution