1.Aix Marseille Université, CNRS, Centrale Med, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
2.LITC Core Facility, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
3.MCD, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
4.Aix Marseille University, CNRS, IBDM UMR7288, Turing Centre for Living Systems, Marseille, France
5.LS2N, CNRS UMR 6004, F44321 Nantes Cedex 3, France
Anne Sentenac (anne.sentenac@fresnel.fr)
Loïc LeGoff (loic.le-goff@univ-amu.fr)
Published:31 December 2024,
Published Online:10 October 2024,
Received:30 October 2023,
Revised:15 August 2024,
Accepted:27 August 2024
Scan QR Code
Mazzella, L. et al. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Light: Science & Applications, 13, 3052-3063 (2024).
Mazzella, L. et al. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Light: Science & Applications, 13, 3052-3063 (2024). DOI: 10.1038/s41377-024-01612-0.
The ultimate aim of fluorescence microscopy is to achieve high-resolution imaging of increasingly larger biological samples. Extended depth of field presents a potential solution to accelerate imaging of large samples when compression of information along the optical axis is not detrimental to the interpretation of images. We have implemented an extended depth of field (EDF) approach in a random illumination microscope (RIM). RIM uses multiple speckled illuminations and variance data processing to double the resolution. It is particularly adapted to the imaging of thick samples as it does not require the knowledge of illumination patterns. We demonstrate highly-resolved projective images of biological tissues and cells. Compared to a sequential scan of the imaged volume with conventional 2D-RIM
EDF-RIM allows an order of magnitude improvement in speed and light dose reduction
with comparable resolution. As the axial information is lost in an EDF modality
we propose a method to retrieve the sample topography for samples that are organized in cell sheets.
Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution.Science363, eaau8302 (2019)..
Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy.J. Microsc.198, 82–87 (2000)..
Müller, C. B.&Enderlein, J. Image scanning microscopy.Phys. Rev. Lett.104, 198101 (2010)..
York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy.Nat. Methods9, 749–754 (2012)..
Heintzmann, R.&Huser, T. Super-resolution structured illumination microscopy.Chem. Rev.117, 13890–13908 (2017)..
Wu, Y.&Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging.Nat. Methods15, 1011–1019 (2018)..
Schermelleh, L. et al. Super-resolution microscopy demystified.Nat. Cell Biol.21, 72–84 (2019)..
Prakash, K., Diederich, B., Heintzmann, R.&Schermelleh, L. Super-resolution microscopy: a brief history and new avenues.Philos. Trans. R. Soc. A380, 20210110 (2022)..
Chen, X. et al. Superresolution structured illumination microscopy reconstruction algorithms: a review.Light Sci. Appl.12, 172 (2023)..
Chen, B.-C. et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution.Science346, 1257998 (2014)..
Chang, B.-J., Perez Meza, V. D.&Stelzer, E. H. csilsfm combines light-sheet fluorescence microscopy and coherent structured illumination for a lateral resolution below 100 nm.Proc. Natl. Acad. Sci. USA114, 4869–4874(2017)..
Chen, B. et al. Resolution doubling in light-sheet microscopy via oblique plane structured illumination.Nat. Methods19, 1419–1426 (2022)..
Chung, E., Kim, D., Cui, Y., Kim, Y.-H.&So, P. T. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens.Biophys. J.93, 1747–1757 (2007)..
Fiolka, R., Beck, M.&Stemmer, A. Structured illumination in total internal reflection fluorescence microscopy using a spatial light modulator.Opt. Lett.33, 1629–1631 (2008)..
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics.Science349, aab3500 (2015)..
Guo, M. et al. Single-shot super-resolution total internal reflection fluorescence microscopy.Nat. Methods15, 425–428 (2018)..
Roth, J., Mehl, J.&Rohrbach, A. Fast tirf-sim imaging of dynamic, low-fluorescent biological samples.Biomed. Opt. Express11, 4008–4026 (2020)..
Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination.Biophys. J.94, 4957–4970 (2008)..
Li, X. et al. Three-dimensional structured illumination microscopy with enhanced axial resolution.Nat. Biotechnol.41, 1307–1319 (2023)..
Wicker, K., Mandula, O., Best, G., Fiolka, R.&Heintzmann, R. Phase optimisation for structured illumination microscopy.Opt. Express21, 2032–2049 (2013)..
Demmerle, J. et al. Strategic and practical guidelines for successful structured illumination microscopy.Nat. Protoc.12, 988–1010 (2017)..
Qian, J. et al. Structured illumination microscopy based on principal component analysis.eLight3, 4 (2023)..
Turcotte, R. et al. Dynamic super-resolution structured illumination imaging in the living brain.Proc. Natl. Acad. Sci. USA116, 9586–9591 (2019)..
Lin, R., Kipreos, E. T., Zhu, J., Khang, C. H.&Kner, P. Subcellular three-dimensional imaging deep through multicellular thick samples by structured illumination microscopy and adaptive optics.Nat. Commun.12, 3148 (2021)..
Thomas, B., Wolstenholme, A., Chaudhari, S. N., Kipreos, E. T.&Kner, P. Enhanced resolution through thick tissue with structured illuminationand adaptive optics.J. Biomed. Opt.20, 026006–026006 (2015)..
Förster, R., Müller, W., Richter, R.&Heintzmann, R. Automated distinction of shearing and distortion artefacts in structured illumination microscopy.Opt. Express26, 20680–20694 (2018)..
Mangeat, T. et al. Super-resolved live-cell imaging using random illumination microscopy.Cell Rep. Methods1, 100009 (2021)..
Liu, S.&Hua, H. Extended depth-of-field microscopic imaging with a variable focus microscope objective.Opt. Express19, 353–362 (2011)..
Mac, K. D. et al. Fast volumetric imaging with line-scan confocal microscopy by electrically tunable lens at resonant frequency.Opt. Express30, 19152–19164 (2022)..
Mermillod-Blondin, A., McLeod, E.&Arnold, C. B. High-speed varifocal imaging with a tunable acoustic gradient index of refraction lens.Opt. Lett.33, 2146–2148 (2008)..
Shain, W. J., Vickers, N. A., Goldberg, B. B., Bifano, T.&Mertz, J. Extended depth-of-field microscopy with a high-speed deformable mirror.Opt. Lett.42, 995–998 (2017)..
Xiao, S., Tseng, H.-A., Gritton, H., Han, X.&Mertz, J. Video-rate volumetric neuronal imaging using 3d targeted illumination.Sci. Rep.8, 7921 (2018)..
Botcherby, E., Juškaitis, R.&Wilson, T. Scanning two photon fluorescence microscopy with extended depth of field.Opt. Commun.268, 253–260 (2006)..
Thériault, G., De Koninck, Y.&McCarthy, N. Extended depth of field microscopy for rapid volumetric two-photon imaging.Opt. Express21, 10095–10104 (2013)..
Thériault, G., Cottet, M., Castonguay, A., McCarthy, N.&De Koninck, Y. Extended two-photon microscopy in live samples with bessel beams: steadier focus, faster volume scans, and simpler stereoscopic imaging.Front. Cell. Neurosci.8, 139 (2014)..
Lu, R. et al. Video-rate volumetric functional imaging of the brain at synaptic resolution.Nat. Neurosci.20, 620–628 (2017)..
Abrahamsson, S., Usawa, S.&Gustafsson, M. A new approach to extended focus for high-speed high-resolution biological microscopy. InThree-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIII 6090, 128–135 (2006).
Seong, B. et al. E2e-bpf microscope: extended depth-of-field microscopy using learning-based implementation of binary phase filter and image deconvolution.Light Sci. Appl.12, 269 (2023)..
Mertz, J.Introduction to Optical Microscopy(Cambridge University Press, 2019).
Labouesse, S., Idier, J., Sentenac, A., Mangeat, T.&Allain, M. Random illumination microscopy from variance images. In2020 28th European Signal Processing Conference (EUSIPCO), 785–789 (IEEE, 2021).
Affannoukoué, K. et al. Super-resolved total internal reflection fluorescence microscopy using random illuminations.Optica10, 1009–1017 (2023)..
Abouakil, F. et al. An adaptive microscope for the imaging of biological surfaces.Light Sci. Appl.10, 210 (2021)..
Burcklen, M.-A., Galland, F.&Le Goff, L. Optimizing sampling for surface localization in 3d-scanning microscopy.J. Opt. Soc. Am. A39, 1479–1488 (2022)..
Chen, B. et al. Projective light-sheet microscopy with flexible parameter selection.Nat. Commun.15, 2755 (2024)..
Qu, Y.&Hu, Y. Analysis of axial scanning range and magnification variation in wide-field microscope for measurement using an electrically tunable lens.Microsc. Res. Tech.82, 101–113 (2019)..
Martı, M. et al. Fast axial-scanning widefield microscopy with constant magnification and resolution.J. Disp. Technol.11, 913–920 (2015)..
Idier, J. et al. On the superresolution capacity of imagers using unknown speckle illuminations.IEEE Trans. Comput. Imaging4, 87–98 (2017)..
Labouesse, S., Idier, J., Sentenac, A., Allain, M.&Mangeat, T. Proof of the resolution-doubling of random illumination microscopy using the variance of the speckled images. In2021 29th European Signal Processing Conference (EUSIPCO), 1159–1162 (IEEE, 2021).
Sternberg, S. R. Biomedical image processing.Computer16, 22–34 (1983)..
Meng, H., Nuzhdin, D., Sison, M., Galland, F.&LeGoff, L. Adaptive scans allow 3d-targeted laser dissection to probe the mechanics of cell sheets.Eur. Phys. J.138, 1–11 (2023)..
Fischler, M. A.&Bolles, R. C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography.Commun. ACM24, 381–395 (1981)..
Prasad, M., Jang, A. C., Starz-Gaiano, M., Melani, M.&Montell, D. J. A protocol for culturing drosophila melanogaster stage 9 egg chambers for live imaging.Nat. Protoc.2, 2467–2473 (2007)..
Martin, A. C., Kaschube, M.&Wieschaus, E. F. Pulsed contractions of an actin–myosin network drive apical constriction.Nature457, 495–499 (2009)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution