E. L. Ginzton Laboratory, Stanford University, 348 Via Pueblo, Stanford, CA 94305, USA
Charles Roques-Carmes (chrc@stanford.edu)
Published:30 November 2024,
Published Online:20 September 2024,
Received:25 March 2024,
Revised:30 August 2024,
Accepted:03 September 2024
Scan QR Code
Roques-Carmes, C., Fan, S. H. & Miller, D. A. B. Measuring, processing, and generating partially coherent light with self-configuring optics. Light: Science & Applications, 13, 2726-2733 (2024).
Roques-Carmes, C., Fan, S. H. & Miller, D. A. B. Measuring, processing, and generating partially coherent light with self-configuring optics. Light: Science & Applications, 13, 2726-2733 (2024). DOI: 10.1038/s41377-024-01622-y.
Optical phenomena always display some degree of partial coherence between their respective degrees of freedom. Partial coherence is of particular interest in multimodal systems
where classical and quantum correlations between spatial
polarization
and spectral degrees of freedom can lead to fascinating phenomena (e.g.
entanglement) and be leveraged for advanced imaging and sensing modalities (e.g.
in hyperspectral
polarization
and ghost imaging). Here
we present a universal method to analyze
process
and generate spatially partially coherent light in multimode systems by using self-configuring optical networks. Our method relies on cascaded self-configuring layers whose average power outputs are sequentially optimized. Once optimized
the network separates the input light into its mutually incoherent components
which is formally equivalent to a diagonalization of the input density matrix. We illustrate our method with numerical simulations of Mach-Zehnder interferometer arrays and show how this method can be used to perform partially coherent environmental light sensing
generation of multimode partially coherent light with arbitrary coherency matrices
and unscrambling of quantum optical mixtures. We provide guidelines for the experimental realization of this method
including the influence of losses
paving the way for self-configuring photonic devices that can automatically learn optimal modal representations of partially coherent light fields.
Goodman, J. W.Statistical Optics(John Wiley&Sons, 2015).
Korotkova, O.&Gbur, G. Applications of optical coherence theory.Prog. Opt.65, 43–104 (2020)..
Wolf, E. Unified theory of coherence and polarization of random electromagnetic beams.Phys. Lett. A312, 263–267 (2003)..
de Lima 4rdo, B. Unified quantum density matrix description of coherence and polarization.Phys. Lett. A381, 2239–2245 (2017)..
Hasman, E. et al. Space-variant polarization manipulation.Prog. Opt.47, 215–289 (2005)..
Balthasar Mueller, J. P. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization.Phys. Rev. Lett.118, 113901 (2017)..
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-stokes polarization camera.Science365, eaax1839 (2019)..
Mandel, L. Concept of cross-spectral purity in coherence theory.J. Opt. Soc. Am.51, 1342–1350 (1961)..
Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications.Adv. Opt. Photonics1, 1–57 (2009)..
Kagalwala, K. H. et al. Bell's measure in classical optical coherence.Nat. Photonics7, 72–78 (2013)..
Zhang, H. W., Hsu, C. W.&Miller, O. D. Scattering concentration bounds: brightness theorems for waves.Optica6, 1321–1327 (2019)..
Nielsen, M. A.&Chuang, I. L.Quantum computation and quantum information. (Cambridge University Press, 2010).
Wolf, E. New theory of partial coherence in the space– frequency domain. Part Ⅰ: spectra and cross spectra of steady-state sources.J. Opt. Soc. Am.72, 343–351 (1982)..
Wolf, E. New theory of partial coherence in the space-frequency domain. Part Ⅱ: steady-state fields and higher-order correlations.J. Opt. Soc. Am. A3, 76–85 (1986)..
Withington, S.&Murphy, J. A. Modal analysis of partially coherent submillimeter-wave quasi-optical systems.IEEE Trans. Antennas Propag.46, 1651–1659 (1998)..
Kagalwala, K. H. et al. Optical coherency matrix tomography.Sci. Rep.5, 15333 (2015)..
Bogaerts, W. et al. Programmable photonic circuits.Nature586, 207–216 (2020)..
Milanizadeh, M. et al. Coherent self-control of free-space optical beams with integrated silicon photonic meshes.Photonics Res.9, 2196–2204 (2021)..
Miller, D. A. B. Analyzing and generating multimode optical fields using self-configuring networks.Optica7, 794–801 (2020)..
Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits.Nat. Photonics11, 441–446 (2017)..
Pai, S. et al. Experimentally realized in situ backpropagation for deep learning in photonic neural networks.Science380, 398–404 (2023)..
Prabhu, M. et al. Accelerating recurrent ising machines in photonic integrated circuits.Optica7, 551–558 (2020)..
Harris, N. C. et al. Quantum transport simulations in a programmable nanophotonic processor.Nat. Photonics11, 447–452 (2017)..
Miller, D. A. B. Self-configuring universal linear optical component.Photonics Res.1, 1–15 (2013)..
Carolan, J. et al. Universal linear optics.Science349, 711–716 (2015)..
Miller, D. A. B. Self-aligning universal beam coupler.Opt. Express21, 6360–6370 (2013)..
Miller, D. A. B. Establishing optimal wave communication channels automatically.J. Lightwave Technol.31, 3987–3994 (2013)..
SeyedinNavadeh, S. et al. Determining the optimal communication channels of arbitrary optical systems using integrated photonic processors.Nat. Photonics18, 149–155 (2024)..
Reck, M. et al. Experimental realization of any discrete unitary operator.Phys. Rev. Lett.73, 58–61 (1994)..
Pai, S. et al. Scalable and self-correcting photonic computation using balanced photonic binary tree cascades. Print athttps://doi.org/10.48550/arXiv.2210.16935https://doi.org/10.48550/arXiv.2210.16935(2022).
Miller, D. A. B. Perfect optics with imperfect components.Optica2, 747–750 (2015)..
Wilkes, C. M. et al. 60 dB high-extinction auto-configured mach–zehnder interferometer.Opt. Lett.41, 5318–5321 (2016)..
Miller, D. A. B. Setting up meshes of interferometers–reversed local light interference method.Opt. Express25, 29233–29248 (2017)..
Bütow, J. et al. Spatially resolving amplitude and phase of light with a reconfigurable photonic integrated circuit.Optica9, 939–946 (2022)..
Henry, C. H.&Kazarinov, R. F. Quantum noise in photonics.Rev. Mod. Phys.68, 801–853 (1996)..
Roques-Carmes, C. et al. A framework for scintillation in nanophotonics.Science375, eabm9293 (2022)..
Kingma, D. P.&Ba, J. Adam: a method for stochastic optimization. InProc. 3rd International Conference on Learning Representations(ICLR, 2015).
Hughes, T. W. et al. Training of photonic neural networks through in situ backpropagation and gradient measurement.Optica5, 864–871 (2018)..
Wright, L. G. et al. Deep physical neural networks trained with backpropagation.Nature601, 549–555 (2022)..
Momeni, A. et al. Backpropagation-free training of deep physical neural networks.Science382, 1297–1303 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution