1.Centre of Light for Life and School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
2.ARC Centre of Excellence in Optical Microcombs for Breakthrough Science (COMBS), University of Adelaide, Adelaide, South Australia 5005, Australia
3.SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, Scotland
Christopher Perrella (chris.perrella@adelaide.edu.au)
Kishan Dholakia (kishan.dholakia@adelaide.edu.au)
Published:30 November 2024,
Published Online:26 September 2024,
Scan QR Code
Perrella, C. & Dholakia, K. A material change for ultra-high precision force sensing. Light: Science & Applications, 13, 2443-2445 (2024).
Perrella, C. & Dholakia, K. A material change for ultra-high precision force sensing. Light: Science & Applications, 13, 2443-2445 (2024). DOI: 10.1038/s41377-024-01626-8.
An original form of photonic force microscope has been d
eveloped. Operating with a trapped lanthanide-doped crystal of nanometric dimensions
a minimum detected force of the order of 110 aN and a force sensitivity down to 1.8 fN/
$$ \sqrt{{\rm{Hz}}} $$
have been realised. This opens up new prospects for force sensing in the physical sciences.
Bustamante, C. J. et al. Optical tweezers in single-molecule biophysics.Nat. Rev. Methods Prim.1, 25 (2021)..
Watson, M. L. et al. Rotational optical tweezers for active microrheometry within living cells.Optica9, 1066–1072 (2022)..
Sudhakar, S. et al. Germanium nanospheres for ultraresolution picotensiometry of kinesin motors.Science371, eabd9944 (2021)..
Spesyvtseva, S. E. S.&Dholakia, K. Trapping in a material world.ACS Photon.3, 719–736 (2016)..
10.1038/s41566-024-01462-7Shan, X. C. et al. Sub-femtonewton force sensing in solution by super-resolved photonic force microscopy. Nat. Photon. https://doi.org/10.1038/s41566-024-01462-7 (2024)..
Dalaka, E. et al. Deformable microlaser force sensing.Light Sci. Appl.13, 129 (2024)..
Campugan, C. A., Dunning, K. R.&Dholakia, K. Optical manipulation: a step change for biomedical science.Contemp. Phys.61, 277–294 (2020)..
Liu, L. et al. Subfemtonewton force spectroscopy at the thermal limit in liquids.Phys. Rev. Lett.116, 228001 (2016)..
Schnoering, G. et al. Thermally limited force microscopy on optically trapped single metallic nanoparticles.Phys. Rev. Appl.11, 034023 (2019)..
Zensen, C. et al. Pushing nanoparticles with light — a femtonewton resolved measurement of optical scattering forces.APL Photon.1, 026102 (2016)..
Shan, X. et al. Optical tweezers beyond refractive index mismatch using highly doped upconversion nanoparticles.Nat. Nanotechnol.16, 531–537 (2021)..
Hansen, P. M. et al. Expanding the optical trapping range of gold nanoparticles.Nano Lett.5, 1937–1942 (2005)..
Seol, Y., Carpenter, A. E.&Perkins, T. T. Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating.Opt. Lett.31, 2429–2431 (2006)..
Nam, S. H. et al. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells.Angew. Chem. Int. Ed.50, 6093–6097 (2011)..
Liang, Y. et al. Migrating photon avalanche in different emitters at the nanoscale enables 46th-order optical nonlinearity.Nat. Nanotechnol.17, 524–530 (2022)..
Bates, M. et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes.Science317, 1749–1753 (2007)..
Dholakia, K.&Zemánek, P. Colloquium: gripped by light: optical binding.Rev. Mod. Phys.82, 1767–1791 (2010)..
Vetrone, F. et al. Temperature sensing using fluorescent nanothermometers.ACS Nano4, 3254–3258 (2010)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution