1.Corning Research and Development Corporation, 184 Science Center Dr, Painted Post, NY 14870, USA
2.Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, USA
Paulo Dainese (dainesep@corning.com)
Federico Capasso (capasso@seas.harvard.edu)
Published:31 December 2024,
Published Online:29 October 2024,
Received:11 June 2024,
Revised:02 September 2024,
Accepted:04 September 2024
Scan QR Code
Dainese, P. et al. Shape optimization for high efficiency metasurfaces: theory and implementation. Light: Science & Applications, 13, 3171-3180 (2024).
Dainese, P. et al. Shape optimization for high efficiency metasurfaces: theory and implementation. Light: Science & Applications, 13, 3171-3180 (2024). DOI: 10.1038/s41377-024-01629-5.
Complex non-local behavior makes designing high efficiency and multifunctional metasurfaces a significant challenge. While using libraries of meta-atoms provide a simple and fast implementation methodology
pillar to pillar interaction often imposes performance limitations. On the other extreme
inverse design based on topology optimization leverages non-local coupling to achieve high efficiency
but leads to complex and difficult to fabricate structures. In this paper
we demonstrate numerically and experimentally a shape optimization method that enables high efficiency metasurfaces while providing direct control of the structure complexity through a Fourier decomposition of the surface gradient. The proposed method provides a path towards manufacturability of inverse-designed high efficiency metasurfaces.
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Kildishev, A. V., Boltasseva, A.&Shalaev, V. M. Planar photonics with metasurfaces.Science339, 1232009 (2013)..
Arbabi, A., Horie, Y., Bagheri, M.&Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat. Nanotechnol.10, 937–943 (2015)..
Kuznetsov, A. I., Miroshnichenko, A. E., Brongersma, M. L., Kivshar, Y. S.&Luk'yanchuk, B. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Lalanne, P.&Chavel, P. Metalenses at visible wavelengths: past, present, perspectives.Laser Photonics Rev.11, 1600295 (2017)..
Kuznetsov, A. I. et al. Roadmap for optical metasurfaces.ACS Photonics11, 816–865 (2024)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible.Nat. Nanotechnol.13, 220–226 (2018)..
Arbabi, E., Kamali, S. M., Arbabi, A.&Faraon, A. Full-stokes imaging polarimetry using dielectric metasurfaces.ACS Photonics5, 3132–3140 (2018)..
Rubin, N. A. et al. Matrix fourier optics enables a compact full-stokespolarization camera.Science365, eaax1839 (2019)..
Dorrah, A. H.&Capasso, F. Tunable structured light with flat optics.Science376, eabi6860 (2022)..
Oh, J. et al. Adjoint-optimized metasurfaces for compact mode-division multiplexing.ACS Photonics9, 929–937 (2022)..
Oh, J. et al. Metasurfaces for free-space coupling to multicore fibers.J. Lightwave Technol.42, 2385–2396 (2023)..
Chen, M. K. et al. Edge detection with meta-lens: from one dimension to three dimensions.Nanophotonics10, 3709–3715 (2021)..
Cordaro, A. et al. Solving integral equations in free space with inverse-designed ultrathin optical metagratings.Nat. Nanotechnol.18, 365–372 (2023)..
Jammi, S. et al. Three-dimensional, multi-wavelength beam formation with integrated metasurface optics for sr laser cooling. print athttps://doi.org/10.48550/arxiv.2402.08885https://doi.org/10.48550/arxiv.2402.08885(2024).
Tseng, M. L. et al. Vacuum ultraviolet nonlinear metalens.Sci. Adv.8, eabn5644 (2022)..
Lalanne, P., Hugonin, J. P.&Chavel, P. Optical properties of deep lamellar gratings: a coupled bloch-mode insight.J. Lightwave Technol.24, 2442–2449 (2006)..
Sell, D., Yang, J., Doshay, S., Yang, R.&Fan, J. A. Large-angle, multifunctional metagratings based on freeform multimode geometries.Nano Lett.17, 3752–3757 (2017)..
Díaz-Rubio, A., Asadchy, V. S., Elsakka, A.&Tretyakov, S. A. From the generalized reflection law to the realization of perfect anomalous reflectors.Sci. Adv.3, e1602714 (2017)..
Campbell, S. D. et al. Review of numerical optimization techniques for meta-device design [invited].Optical Mater. Express9, 1842–1863 (2019)..
Gigli, C. et al. Fundamental limitations of huygens' metasurfaces for optical beam shaping.Laser Photonics Rev.15, 2000448 (2021)..
Stork, W., Streibl, N., Haidner, H.&Kipfer, P. Artificial distributed-index media fabricated by zero-order gratings.Opt. Lett.16, 1921–1923 (1991)..
Chen, F. T.&Craighead, H. G. Diffractive lens fabricated with mostly zeroth-order gratings.Opt. Lett.21, 177–179 (1996)..
Lalanne, P., Astilean, S., Chavel, P., Cambril, E.&Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings.Opt. Lett.23, 1081–1083 (1998)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333–337 (2011)..
Whiting, E. B., Campbell, S. D., Kang, L.&Werner, D. H. Meta-atom library generation via an efficient multi-objective shape optimization method.Opt. Express28, 24229–24242 (2020)..
Jensen, J. S.&Sigmund, O. Topology optimization for nano-photonics.Laser Photonics Rev.5, 308–321 (2011)..
Molesky, S. et al. Inverse design in nanophotonics.Nat. Photonics12, 659–670 (2018)..
Chung, H.&Miller, O. D. High-na achromatic metalenses by inverse design.Opt. Express28, 6945–6965 (2020)..
Sang, D. et al. Toward high-efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization.Laser Photonics Rev.16, 2200265 (2022)..
Wang, E. W., Sell, D., Phan, T.&Fan, J. A. Robust design of topology-optimized metasurfaces.Optical Mater. Express9, 469–482 (2019)..
Liu, V.&Fan, S. H. Compact bends for multi-mode photonic crystal waveguides with high transmission and suppressed modal crosstalk.Opt. Express21, 8069–8075 (2013)..
Lalau-Keraly, C. M., Bhargava, S., Miller, O. D.&Yablonovitch, E. Adjoint shape optimization applied to electromagnetic design.Opt. Express21, 21693–21701 (2013)..
Lebbe, N., Dapogny, C., Oudet, E., Hassan, K.&Gliere, A. Robust shape and topology optimization of nanophotonic devices using the level set method.J. Comput. Phys.395, 710–746 (2019)..
Mansouree, M., McClung, A., Samudrala, S.&Arbabi, A. Large-scale parametrized metasurface design using adjoint optimization.ACS Photonics8, 455–463 (2021)..
Zheng, Y. H. et al. Designing high-efficiency extended depth-of-focus metalens via topology-shape optimization.Nanophotonics11, 2967–2975 (2022)..
Skarda, J. et al. Low-overhead distribution strategy for simulation and optimization of large-area metasurfaces.npj Comput. Mater.8, 78 (2022)..
Gershnabel, E. et al. Reparameterization approach to gradient-based inverse design of three-dimensional nanophotonic devices.ACS Photonics10, 815–823 (2023)..
Zhou, Y., Mao, C., Gershnabel, E., Chen, M.&Fan, J. A. Large-area, high-numerical-aperture, freeform metasurfaces.Laser Photonics Rev.18, 2300988 (2024)..
Zhou, Y., Shao, Y., Mao, C.&Fan, J. A. Inverse-designed metasurfaces with facile fabrication parameters.J. Opt.26, 055101 (2024)..
Landau, L. D. et al.Electrodynamics of continuous media,8(Elsevier, 2013)..
Chu, H. C. et al. Diffuse reflection and reciprocity-protected transmission via a random-flip metasurface.Sci. Adv.7, eabj0935 (2021)..
Palmieri, A. et al. Do bilayer metasurfaces behave as a stack of decoupled single-layer metasurfaces?Opt. Express32, 8146–8159 (2023)..
Diaz, A. R.&Sigmund, O. A topology optimization method for design of negative permeability metamaterials.Struct. Multidiscip. Optim.41, 163–177 (2010)..
Hughes, T. W., Minkov, M., Liu, V., Yu, Z.&Fan, S. A perspective on the pathway toward full wave simulation of large area metalenses.Appl. Phys. Lett.119, 150502 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution