1.State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
2.Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
3.Department of Physics, University of Hong Kong, Hong Kong, China
4.Department of Electrical & Electronic Engineering, University of Hong Kong, Hong Kong, China
Yachao Liu (yachaoliu@szu.edu.cn)
Guo Ping Wang (gpwang@szu.edu.cn)
Shuang Zhang (shuzhang@hku.hk)
Published:30 November 2024,
Published Online:27 September 2024,
Received:14 May 2024,
Revised:02 September 2024,
Accepted:10 September 2024
Scan QR Code
Liu, Y. C. et al. Continuous evolution of Fermi arcs in a minimal ideal photonic Weyl medium. Light: Science & Applications, 13, 2794-2801 (2024).
Liu, Y. C. et al. Continuous evolution of Fermi arcs in a minimal ideal photonic Weyl medium. Light: Science & Applications, 13, 2794-2801 (2024). DOI: 10.1038/s41377-024-01632-w.
Propagation properties of electromagnetic waves in an optical medium are mainly determined by the contour of equal-frequency states in
$$ {\boldsymbol{k}} $$
-space. In photonic Weyl media
the topological surface waves lead to a unique open arc of the equal-frequency contour
called the Fermi arc. However
for most realistic Weyl systems
the shape of Fermi arcs is fixed due to the constant impedance of the surrounding medium
making it difficult to manipulate the surface wave. Here we demonstrate that by adjusting the thickness of the air layer sandwiched between two photonic Weyl media
the shape of the Fermi arc can be continuously changed from convex to concave. Moreover
we show that the concave Fermi-arc waves can be used to achieve topologically protected electromagnetic pulling forces over a broad range of angles in the air layer. Our finding offers a generally applicable strategy to shape the Fermi arc in photonic Weyl media.
Wan, X. G. et al. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates.Phys. Rev. B83, 205101 (2011)..
Xu, S. Y. et al. Observation of Fermi arc surface states in a topological metal.Science347, 294–298 (2015)..
Lv, B. Q. et al. Observation of Fermi-arc spin texture in TaAs.Phys. Rev. Lett.115, 217601 (2015)..
Fang, C. et al. Topological semimetals with helicoid surface states.Nat. Phys.12, 936–941 (2016)..
Inoue, H. et al. Quasiparticle interference of the Fermi arcs and surface-bulk connectivity of a Weyl semimetal.Science351, 1184–1187 (2016)..
Noh, J. et al. Experimental observation of optical Weyl points and Fermi arc-like surface states.Nat. Phys.13, 611–617 (2017)..
Yang, B. et al. Direct observation of topological surface-state arcs in photonic metamaterials.Nat. Commun.8, 97 (2017)..
Potter, A. C., Kimchi, I.&Vishwanath, A. Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals.Nat. Commun.5, 5161 (2014)..
Zhang, Y. et al. Quantum oscillations from generic surface Fermi arcs and bulk chiral modes in Weyl semimetals.Sci. Rep.6, 23741 (2016)..
Zhang, Y. Cyclotron orbit knot and tunable-field quantum Hall effect.Phys. Rev. Res.1, 022005 (2019)..
Peri, V. et al. Weyl orbits without an external magnetic field.Phys. Rev. B101, 235117 (2020)..
Zhang, C. et al. Cycling Fermi arc electrons with Weyl orbits.Nat. Rev. Phys.3, 660–670 (2021)..
He, H. L. et al. Topological negative refraction of surface acoustic waves in a Weyl phononic crystal.Nature560, 61–64 (2018)..
Liu, Y. C. et al. All-angle reflectionless negative refraction with ideal photonic Weyl metamaterials.Light Sci. Appl.11, 276 (2022)..
Liu, G. G. et al. Topological Chern vectors in three-dimensional photonic crystals.Nature609, 925–930 (2022)..
Chattopadhyay, U. et al. Fermi-arc-induced vortex structure in Weyl beam shifts.Phys. Rev. Lett.122, 066602 (2019)..
Dwivedi, V. Fermi arc reconstruction at junctions between Weyl semimetals.Phys. Rev. B97, 064201 (2018)..
Ishida, H.&Liebsch, A. Fermi arc engineering at the interface between two Weyl semimetals.Phys. Rev. B98, 195426 (2018)..
Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2.Science365, 1286–1291 (2019)..
Wang, Z. Y. et al. Realization of an ideal Weyl semimetal band in a quantum gas with 3D spin-orbit coupling.Science372, 271–276 (2021)..
Liu, Y. C., Wang, G. P.&Zhang, S. A nonlocal effective medium description of topological Weyl metamaterials.Laser Photonics Rev.15, 2100129 (2021)..
Gao, W. L. et al. Photonic Weyl degeneracies in magnetized plasma.Nat. Commun.7, 12435 (2016)..
Novitsky, A., Qiu, C. W.&Lavrinenko, A. Material-independent and size-independent tractor beams for dipole objects.Phys. Rev. Lett.109, 023902 (2012)..
Jannasch, A. et al. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres.Nat. Photonics6, 469–473 (2012)..
Kajorndejnukul, V. et al. Linear momentum increase and negative optical forces at dielectric interface.Nat. Photonics7, 787–790 (2013)..
Li, H. et al. Momentum-topology-induced optical pulling force.Phys. Rev. Lett.124, 143901 (2020)..
Ali, R. et al. Tailoring optical pulling forces with composite microspheres.Phys. Rev. A102, 023514 (2020)..
Jin, R. C. et al. Optical pulling forces enabled by hyperbolic metamaterials.Nano Lett.21, 10431–10437 (2021)..
Wang, D. L. et al. Guide-wave photonic pulling force using one-way photonic chiral edge states. Proceedings of the CLEO: QELS_Fundamental Science 2015. San Jose, California., United States: Optical Society of America, 2015.
Wang, N., Zhang, R. Y.&Chan, C. T. Robust acoustic pulling using chiral surface waves.Phys. Rev. Appl.15, 024034 (2021)..
Wang, N. et al. Optical pulling using topologically protected one way transport surface-arc waves.Phys. Rev. B105, 014104 (2022)..
Pfeifer, R. N. C. et al.Colloquium: momentum of an electromagnetic wave in dielectric media.Rev. Mod. Phys.79, 1197–1216 (2007)..
Jörg, C. et al. Observation of quadratic (charge-2) Weyl point splitting in near-infrared photonic crystals.Laser Photonics Rev.16, 2100452 (2022)..
Wang, D. Y. et al. Photonic Weyl points due to broken time-reversal symmetry in magnetized semiconductor.Nat. Phys.15, 1150–1155 (2019)..
Yang, W. H. et al. Observation of optical gyromagnetic properties in a magneto-plasmonic metamaterial.Nat. Commun.13, 1719 (2022)..
Lai, Y. Q., Lu, B.&Wang, M. Optical properties and Faraday magneto-optical effects of highly transparent novel Tb2Zr2O7fluorite ceramics.Scr. Mater.227, 115282 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution