1.Center for Macroscopic Quantum States (bigQ), Department of Physics, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
2.Department of Optics, Faculty of Science, Palacky University, 17. listopadu 12, 771 46, Olomouc, Czech Republic
Adnan A. E. Hajomer (aaeha@dtu.dk)
Ivan Derkach (ivan.derkach@upol.cz)
Tobias Gehring (tobias.gehring@fysik.dtu.dk)
Published:31 December 2024,
Published Online:16 October 2024,
Received:29 May 2024,
Revised:06 September 2024,
Accepted:10 September 2024
Scan QR Code
Hajomer, A. A. E. et al. Continuous-variable quantum passive optical network. Light: Science & Applications, 13, 3099-3108 (2024).
Hajomer, A. A. E. et al. Continuous-variable quantum passive optical network. Light: Science & Applications, 13, 3099-3108 (2024). DOI: 10.1038/s41377-024-01633-9.
To establish a scalable and secure quantum network
a critical milestone is advancing from basic point-to-point quantum key distribution (QKD) systems to the development of inherently multi-user protocols designed to maximize network capacity. Here
we propose a quantum passive optical network (QPON) protocol based on continuous-variable (CV) systems
particularly the quadrature of the coherent state
which enables deterministic
simultaneous
and high-rate secret key generation among all network users. We implement two protocols with different trust levels assigned to the network users and experimentally demonstrate key generation in a quantum access network with 8 users
each with an 11 km span of access link. Depending on the trust assumptions about the users
we reach 1.5 and 2.1 Mbits/s of total network key generation (or 0.4 and 1.0 Mbits/s with finite-size channels estimation). Demonstrating the potential to expand the network’s capacity to accommodate tens of users at a high rate
our CV-QPON protocols open up new possibilities in establishing low-cost
high-rate
and scalable secure quantum access networks serving as a stepping stone towards a quantum internet.
Pirandola, S. et al. Advances in quantum cryptography.Adv. Opt. Photonics12, 1012–1236 (2020)..
Peev, M. et al. The SECOQC quantum key distribution network in Vienna.N. J. Phys.11, 075001 (2009)..
Sasaki, M. et al. Field test of quantum key distribution in the Tokyo QKD network.Opt. express19, 10387–10409 (2011)..
Wang, S. et al. Field and long-term demonstration of a wide area quantum key distribution network.Opt. Express22, 21739–21756 (2014)..
Townsend, P. D. Quantum cryptography on multiuser optical fibre networks.Nature385, 47–49 (1997)..
Fröhlich, B. et al. A quantum access network.Nature501, 69–72 (2013)..
Qi, Z. et al. A 15-user quantum secure direct communication network.Light Sci. Appl.10, 183 (2021)..
Wang, X. et al. Experimental upstream transmission of continuous variable quantum key distribution access network.Opt. Lett.48, 3327–3330 (2023)..
Fernandez, V., Collins, R. J., Gordon, K. J., Townsend, P. D.&Buller, G. S. Passive optical network approach to gigahertz-clocked multiuser quantum key distribution.IEEE J. Quantum Electron.43, 130–138 (2007)..
Chen, W. et al. Field experiment on a "star type" metropolitan quantum key distribution network.IEEE Photonics Technol. Lett.21, 575–577 (2009)..
Choi, I., Young, R. J.&Townsend, P. D. Quantum key distribution on a 10 gb/s wdm-pon.Opt. Express18, 9600–9612 (2010)..
Ciurana, A. et al. Quantum metropolitan optical network based on wavelength division multiplexing.Opt. Express22, 1576–1593 (2014)..
Vokić, N., Milovančev, D., Schrenk, B., Hentschel, M.&Hübel, H. Differential phase-shift QKD in a 2: 16-split lit pon with 19 carrier-grade channels.IEEE J. Sel. Top. Quantum Electron.26, 1–9 (2020)..
Wang, B. -X. et al. Practical quantum access network over a 10 gbit/s ethernet passive optical network.Opt. Express29, 38582–38590 (2021)..
Fröhlich, B. et al. Quantum secured gigabit optical access networks.Sci. Rep.5, 18121 (2015)..
Kaltwasser, J., Seip, J., Fitzke, E., Tippmann, M.&Walther, T. Reducing the number of single-photon detectors in quantum-key-distribution networks by time multiplexing.Phys. Rev. A109, 012618 (2024)..
Huang, C. et al. A cost-efficient quantum access network with qubit-based synchronization.Sci. China Phys. Mech. Astron.67, 240312 (2024)..
Takeoka, M., Seshadreesan, K. P.&Wilde, M. M. Unconstrained capacities of quantum key distribution and entanglement distillation for pure-loss bosonic broadcast channels.Phys. Rev. Lett.119, 150501 (2017)..
Grosshans, F. et al. Quantum key distribution using Gaussian-modulated coherent states.Nature421, 238–241 (2003)..
Senior, J. M.&Jamro, M. Y.Optical Fiber Communications: Principles and Practice(Pearson Education, 2009).
Devetak, I.&Winter, A. Distillation of secret key and entanglement from quantum states.Proc. R. Soc. A: Math. Phys. Eng. Sci.461, 207–235 (2005)..
Weedbrook, C. et al. Quantum cryptography without switching.Phys. Rev. Lett.93, 170504 (2004)..
Huang, Y. et al. Realizing a downstream-access network using continuous-variable quantum key distribution.Phys. Rev. Appl.16, 064051 (2021)..
Scarani, V. et al. The security of practical quantum key distribution.Rev. Mod. Phys.81, 1301 (2009)..
Jouguet, P., Kunz-Jacques, S., Diamanti, E.&Leverrier, A. Analysis of imperfections in practical continuous-variable quantum key distribution.Phys. Rev. A86, 032309 (2012)..
Usenko, V. C.&Filip, R. Trusted noise in continuous-variable quantum key distribution: a threat and a defense.Entropy18, 20 (2016)..
Bian, Y. et al. High-rate point-to-multipoint quantum key distribution using coherent states. arXiv preprint arXiv:2302.02391 (2023).
Hajomer, A. A. et al. Long-distance continuous-variable quantum key distribution over 100-km fiber with local local oscillator.Sci. Adv.10, eadi9474 (2024)..
Zhang, Y. et al. Long-distance continuous-variable quantum key distribution over 202.81 km of fiber.Phys. Rev. Lett.125, 010502 (2020)..
Mani, H. et al. Multiedge-type low-density parity-check codes for continuous-variable quantum key distribution.Phys. Rev. A103, 062419 (2021)..
Ruppert, L., Usenko, V. C.&Filip, R. Long-distance continuous-variable quantum key distribution with efficient channel estimation.Phys. Rev. A90, 062310 (2014)..
Qi, D. et al. Experimental demonstration of a quantum downstream access network in continuous variable quantum key distribution with a local local oscillator.Photonics Res.12, 1262–1273 (2024)..
Leverrier, A., Grosshans, F.&Grangier, P. Finite-size analysis of a continuous-variable quantum key distribution.Phys. Rev. A81, 062343 (2010)..
Hajomer, A. A. et al. Continuous-variable quantum key distribution at 10 gbaud using an integrated photonic-electronic receiver.Optica11, 1197–1204 (2024)..
Eriksson, T. A. et al. Wavelength division multiplexing of continuous variable quantum key distribution and 18.3 tbit/s data channels.Commun. Phys.2, 9 (2019)..
Kovalenko, O. et al. Frequency-multiplexed entanglement for continuous-variable quantum key distribution.Photonics Res.9, 2351–2359 (2021)..
Brunner, H. H. et al. Demonstration of a switched cv-qkd network.EPJ Quantum Technol.10, 38 (2023)..
Derkach, I., Usenko, V. C.&Filip, R. Preventing side-channel effects in continuous-variable quantum key distribution.Phys. Rev. A93, 032309 (2016)..
Jain, N. et al. Modulation leakage vulnerability in continuous-variable quantum key distribution.Quantum Sci. Technol.6, 045001 (2021)..
Gehring, T. et al. Homodyne-based quantum random number generator at 2.9 Gbps secure against quantum side-information.Nat. Commun.12, 1–11 (2021)..
Chin, H. -M., Jain, N., Zibar, D., Andersen, U. L.&Gehring, T. Machine learning aided carrier recovery in continuous-variable quantum key distribution.npj Quantum Inf.7, 20 (2021)..
Leverrier, A., Alléaume, R., Boutros, J., Zémor, G.&Grangier, P. Multidimensional reconciliation for a continuous-variable quantum key distribution.Phys. Rev. A77, 042325 (2008)..
Wang, X. et al. Efficient rate-adaptive reconciliation for continuous-variable quantum key distribution.Quantum Inf. Comput.17, 1123–1134 (2017)..
Tang, B. -Y., Liu, B., Zhai, Y. -P., Wu, C. -Q.&Yu, W. -R. High-speed and large-scale privacy amplification scheme for quantum key distribution.Sci. Rep.9, 15733 (2019)..
Huang, Y., Zhang, Y., Shen, T., Huang, G.&Yu, S. Experimental demonstration of upstream continuous-variable QKD access network. InCLEO: QELS_Fundamental Science, JTu2A–24 (Optica Publishing Group, 2020).
Xu, Y., Wang, T., Zhao, H., Huang, P.&Zeng, G. Round-trip multi-band quantum access network.Photonics Res.11, 1449–1464 (2023)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution