1.State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
2.International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
3.School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China
4.Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
5.Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
Yuqing Cheng (yuqingcheng@ustb.edu.cn)
Guowei Lyu (guowei.lyu@pku.edu.cn)
Published:30 November 2024,
Published Online:27 September 2024,
Received:15 May 2024,
Revised:29 August 2024,
Accepted:08 September 2024
Scan QR Code
Zhang, G. Y. et al. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. Light: Science & Applications, 13, 2802-2811 (2024).
Zhang, G. Y. et al. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. Light: Science & Applications, 13, 2802-2811 (2024). DOI: 10.1038/s41377-024-01634-8.
The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied
integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures
achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination
distinct near-field modes are excited
resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials
structures
and spectral ranges
presenting a novel avenue for achieving high-performance monolithic CPL detection.
Zhou, S. et al. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures.Light Sci. Appl.11, 64 (2022)..
Bedini, E. The use of hyperspectral remote sensing for mineral exploration: a review.J. Hyperspectral Remote Sens.7, 189–211 (2017)..
Sherson, J. F. et al. Quantum teleportation between light and matter.Nature443, 557–560 (2006)..
Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode.Science371, 1129–1133 (2021)..
Lin, D. M. et al. Dielectric gradient metasurface optical elements.Science345, 298–302 (2014)..
Shah, Y. D. et al. An all-dielectric metasurface polarimeter.ACS Photonics9, 3245–3252 (2022)..
Basiri, A. et al. Nature-inspired chiral metasurfaces for circular polarization detection and full-Stokes polarimetric measurements.Light Sci. Appl.8, 78 (2019)..
Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum.Nature613, 474–478 (2023)..
Yang, Y. et al. Circularly polarized light detection by a chiral organic semiconductor transistor.Nat. Photonics7, 634–638 (2013)..
Schulz, M. et al. Chiral excitonic organic photodiodes for direct detection of circular polarized light.Adv. Funct. Mater.29, 1900684 (2019)..
Chen, C. et al. Circularly polarized light detection using chiral hybrid perovskite.Nat. Commun.10, 1927 (2019)..
Liu, T. J. et al. High responsivity circular polarized light detectors based on quasi two-dimensional chiral perovskite films.ACS Nano16, 2682–2689 (2022)..
Ishii, A.&Miyasaka, T. Direct detection of circular polarized light in helical 1D perovskite-based photodiode.Sci. Adv.6, eabd3274 (2020)..
Song, I. et al. Helical polymers for dissymmetric circularly polarized light imaging.Nature617, 92–99 (2023)..
Liu, L. X. et al. Fused-ring electron-acceptor single crystals with chiral 2D supramolecular organization for anisotropic chiral optoelectronic devices.Adv. Mater.35, 2304627 (2023)..
Ganichev, S. D. et al. Conversion of spin into directed electric current in quantum wells.Phys. Rev. Lett.86, 4358–4361 (2001)..
Dhara, S., Mele, E. J.&Agarwal, R. Voltage-tunable circular photogalvanic effect in silicon nanowires.Science349, 726–729 (2015)..
de Juan, F. et al. Quantized circular photogalvanic effect in Weyl semimetals.Nat. Commun.8, 15995 (2017)..
Hatano, T. et al. Transverse photovoltage induced by circularly polarized light.Phys. Rev. Lett.103, 103906 (2009)..
McIver, J. W. et al. Control over topological insulator photocurrents with light polarization.Nat. Nanotechnol.7, 96–100 (2012)..
Sun, X. et al. Topological insulator metamaterial with giant circular photogalvanic effect.Sci. Adv.7, eabe5748 (2021)..
Ganichev, S. D. et al. Spin-galvanic effect.Nature417, 153–156 (2002)..
Kuzyk, A. et al. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response.Nature483, 311–314 (2012)..
Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures.Light Sci. Appl.7, 17158 (2018)..
Chen, S. S. et al. Electromechanically reconfigurable optical nano-kirigami.Nat. Commun.12, 1299 (2021)..
Dai, M. J. et al. On-chip mid-infrared photothermoelectric detectors for full-Stokes detection.Nat. Commun.13, 4560 (2022)..
Bu, Y.H. et al. Configurable circular-polarization-dependent optoelectronic silent state for ultrahigh light ellipticity discrimination.Light Sci. Appl.12, 176 (2023)..
Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.Nat. Commun.6, 8379 (2015)..
Wei, J. X. et al. Geometric filterless photodetectors for mid-infrared spin light.Nat. Photonics17, 171–178 (2023)..
Ma, J. Q., Wang, H. Z.&Li, D. H. Recent progress of chiral perovskites: materials, synthesis, and properties.Adv. Mater.33, 2008785 (2021)..
Jiang, Q. et al. Ultrathin circular polarimeter based on chiral plasmonic metasurface and monolayer MoSe2.Nanoscale12, 5906–5913 (2020)..
Hong, J. et al. Nonlocal metasurface for circularly polarized light detection.Optica10, 134–141 (2023)..
Lu, J. T. et al. All‐dielectric nanostructure fabry–pérot‐enhanced mie resonances coupled with photogain modulation toward ultrasensitive In2S3photodetector.Adv. Funct. Mater.31, 2007987 (2021)..
Long, G. K. et al. Perovskite metasurfaces with large superstructural chirality.Nat. Commun.13, 1551 (2022)..
Li, C. Y. et al. Multiple-polarization-sensitive photodetector based on a perovskite metasurface.Opt. Lett.47, 565–568 (2022)..
Zu, S. et al. Deep-subwavelength resolving and manipulating of hidden chirality in achiral nanostructures.ACS Nano12, 3908–3916 (2018)..
Horrer, A. et al. Local optical chirality induced by near-field mode interference in achiral plasmonic metamolecules.Nano Lett.20, 509–516 (2020)..
Lu, F. et al. Thermopile detector of light ellipticity.Nat. Commun.7, 12994 (2016)..
Shen, C. F. et al. Tellurene photodetector with high gain and wide bandwidth.ACS Nano14, 303–310 (2020)..
Ma, J. C. et al. Unveiling Weyl-related optical responses in semiconducting tellurium by mid-infrared circular photogalvanic effect.Nat. Commun.13, 5425 (2022)..
Wang, Y. X. et al. Field-effect transistors made from solution-grown two-dimensional tellurene.Nat. Electron.1, 228–236 (2018)..
Niu, C. et al. Tunable circular photogalvanic and photovoltaic effect in 2D tellurium with different chirality.Nano Lett.23, 3599–3606 (2023)..
Tong, L. et al. Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature.Nat. Commun.11, 2308 (2020)..
Kim, N. Y. et al. Chiroptical‐conjugated polymer/chiral small molecule hybrid thin films for circularly polarized light‐detecting heterojunction devices.Adv. Funct. Mater.29, 1808668 (2019)..
Yao, B. et al. Symmetry-broken 2D lead–tin mixed chiral perovskite for high asymmetry factor circularly polarized light detection.Nano Lett.23, 1938–1945 (2023)..
Li, D. et al. Chiral lead-free hybrid perovskites for self-powered circularly polarized light detection.Angew. Chem.133, 8496–8499 (2021)..
Kim, H. et al. Ultrasensitive near-infrared circularly polarized light detection using 3D perovskite embedded with chiral plasmonic nanoparticles.Adv. Sci.9, 2104598 (2022)..
Cai, J. R. et al. Polarization-sensitive optoionic membranes from chiral plasmonic nanoparticles.Nat. Nanotechnol.17, 408–416, https://doi.org/10.1038/s41565-022-01079-3 (2022)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution