1.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, China
2.State Key Laboratory of ASIC and System, Department of Microelectronics, Fudan University, Shanghai, China
3.University of Chinese Academy of Sciences, Beijing, China
4.School of Life Science and Technology, ShanghaiTech University, Shanghai, China
5.School of Mathematical and Physical Sciences, Wuhan Textile University, Wuhan, China
6.Shanghai Clinical Research and Trial Center, Shanghai, China
Shuijin He (heshj@shanghaitech.edu.cn)
Peng Zhou (pengzhou@fudan.edu.cn)
Weida Hu (wdhu@mail.sitp.ac.cn)
Published:30 November 2024,
Published Online:27 September 2024,
Received:22 August 2024,
Revised:30 August 2024,
Accepted:14 September 2024
Scan QR Code
Wang, Z. et al. Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation. Light: Science & Applications, 13, 2812-2823 (2024).
Wang, Z. et al. Giant infrared bulk photovoltaic effect in tellurene for broad-spectrum neuromodulation. Light: Science & Applications, 13, 2812-2823 (2024). DOI: 10.1038/s41377-024-01640-w.
Given the surpassing of the Shockley-Quiesser efficiency limit in conventional p-n junction photovoltaic effect
bulk photovoltaic effect (BPVE) has garnered significant research interest. However
the BPVE primarily focuses on a narrow wavelength range
limiting its potential applications. Here we report a giant infrared bulk photovoltaic effect in tellurene (
Te) for broad-spectrum neuromodulation. The generated photocurrent in uniformly illuminated Te excludes other photoelectric effects and is attributed to the BPVE. The bulk photovoltaic wavelength in Te spans a wide range from the ultraviolet (390 nm) to the mid-infrared (3.8 µm). Moreover
the photocurrent density of 70.4 A cm
−2
under infrared light simulation outperforms that in previous ultraviolet and visible semiconductors as well as infrared semimetals. Te attached to the dendrites or somata of the cortical neurons successfully elicit action potentials under broad-spectrum light irradiation. This work lays the foundation for the further development of infrared BPVE in narrow bandgap materials.
Ross, R. T.&Nozik, A. J. Efficiency of hot‐carrier solar energy converters.J. Appl. Phys.53, 3813–3818 (1982)..
Carlos, L. D., Ferreira, R. A. S., de Zea Bermudez, V., Julián-López, B.&Escribano, P. Progress on lanthanide-based organic–inorganic hybrid phosphors.Chem. Soc. Rev.40, 536–549 (2011)..
Spanier, J. E. et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator.Nat. Photon.10, 611–616 (2016)..
Glass, A. M., von der Linde, D.&Negran, T. J. High‐voltage bulk photovoltaic effect and the photorefractive process in LiNbO3.Appl. Phys. Lett.25, 233 (1974)..
Koch, W. T. H., Munser, R., Ruppel, W.&Würfel, P. Bulk photovoltaic effect in BaTiO3.Solid State Commun.17, 847–850 (1975)..
Brody, P. S. High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics.J. Solid State Chem.12, 193–200 (1975)..
Yun, Y., Mühlenbein, L., Knoche, D. S., Lotnyk, A.&Bhatnagar, A. Strongly enhanced and tunable photovoltaic effect in ferroelectric-paraelectric superlattices.Sci. Adv.7, eabe4206 (2021)..
Sun, Z. et al. A photoferroelectric perovskite‐type organometallic halide with exceptional anisotropy of bulk photovoltaic effects.Angew. Chem. Int. Ed.55, 6545–6550 (2016)..
Nakamura, M. et al. Shift current photovoltaic effect in a ferroelectric charge-transfer complex.Nat. Commun.8, 281 (2017)..
Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal.Nat. Mater.18, 471–475 (2019)..
Xu, S. -Y. et al. Electrically switchable Berry curvature dipole in the monolayer topological insulator WTe2.Nat. Phys.14, 900–906 (2018)..
Dong, Y. et al. Giant bulk piezophotovoltaic effect in 3R-MoS2.Nat. Nanotechnol.18, 36–41 (2023)..
Zhang, Y. et al. Enhanced intrinsic photovoltaic effect in tungsten disulfide nanotubes.Nature570, 349–353 (2019)..
Jiang, J. et al. Flexo-photovoltaic effect in MoS2.Nat. Nanotechnol.16, 894–901 (2021)..
Akamatsu, T. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect.Science372, 68–72 (2021)..
Karatum, O. et al. Optical neuromodulation at all scales: from nanomaterials to wireless optoelectronics and integrated systems.Chem. Soc. Rev.52, 3326–3352 (2023)..
Jiang, S., Wu, X., Rommelfanger, N. J., Ou, Z.&Hong, G. Shedding light on neurons: optical approaches for neuromodulation.Natl Sci. Rev.9, nwac007 (2022)..
Parameswaran, R. et al. Photoelectrochemical modulation of neuronal activity with free-standing coaxial silicon nanowires.Nat. Nanotechnol.13, 260–266 (2018)..
Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation.Nat. Commun.2, 166 (2011)..
Melikov, R. et al. Bidirectional optical neuromodulation using capacitive charge-transfer.Biomed. Opt. Express11, 6068–6077 (2020)..
Chen, S. et al. Near-infrared deep brain stimulation via upconversion nanoparticle–mediated optogenetics.Science359, 679–684 (2018)..
Wu, X. et al. Tether-free photothermal deep-brain stimulation in freely behaving mice via wide-field illumination in the near-infrared-II window.Nat. Biomed. Eng.6, 754–770 (2022)..
Nakatsuji, H. et al. Thermosensitive ion channel activation in single neuronal cells by using surface-engineered plasmonic nanoparticles.Angew. Chem. Int. Ed.54, 11725–11729 (2015)..
Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces.Nat. Mater.15, 1023–1030 (2016)..
Jiang, Y. et al. Neural stimulation in vitro and in vivo by photoacoustic nanotransducers.Matter4, 654–674 (2021)..
Zheng,N. et al. Photoacoustic carbon nanotubes embedded silk scaffolds for neural stimulation and regeneration.ACS Nano16, 2292–2305 (2022)..
Coker, A., Lee, T.&Das, T. P. Investigation of the electronic properties of tellurium-energy-band structure.Phys. Rev. B22, 2968–2975 (1980)..
Wu, W., Qiu, G., Wang, Y., Wang, R.&Ye, P. Tellurene: its physical properties, scalable nanomanufacturing, and device applications.Chem. Soc. Rev.47, 7203–7212 (2018)..
Moldavskaya, M. et al. Photocurrents in bulk tellurium.Phys. Rev. B108, 235209 (2023)..
Wang, Y. et al. Two-dimensional ferroelectricity and switchable spin-textures in ultra-thin elemental Te multilayers.Mater. Horiz.5, 521–528 (2018)..
Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene.Nat. Electron.1, 228–236 (2018)..
Sze, S. M., Li, Y.&Ng, K. K.Physics Of Semiconductor Devices(John Wiley&sons, 2021).
Tutihasi, S., Roberts, G. G., Keezer, R. C.&Drews, R. E. Optical properties of tellurium in the fundamental absorption region.Phys. Rev.177, 1143–1150 (1969)..
Amani, M. et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors.ACS Nano12, 7253–7263 (2018)..
Zhang, C. et al. High-performance photodetectors for visible and near-infrared lights based on individual WS2nanotubes.Appl. Phys. Lett.100, 243101 (2012)..
Wang, Q. et al. Ultrafast broadband photodetectors based on three-dimensional dirac semimetal Cd3As2.Nano Lett.17, 834–841 (2017)..
Qiu, G. et al. Thermoelectric performance of 2D tellurium with accumulation contacts.Nano Lett.19, 1955–1962 (2019)..
Sturman, B. I., Fridkin, V. M.&Bradley, J.The Photovoltaic And Photorefractive Effects In Noncentrosymmetric Materials(Gordon and Breach Science Publishers, 1921).
Vernet Crua, A.Green Nanotechnology For The Application Of Tellurium Nanowires In Biomedicine. Master's Thesis (2018).
Medina Cruz, D. et al. Citric juice-mediated synthesis of tellurium nanoparticles with antimicrobial and anticancer properties.Green Chem.21, 1982–1998 (2019)..
Parfen'ev, R. et al. Defect formation in tellurium in various gravity conditions.Phys. Solid State44, 1241–1248 (2002)..
Liu, Y., Wu, W.&Goddard, W. A. III Tellurium: fast electrical and atomic transport along the weak interaction direction.J. Am. Chem. Soc.140, 550–553 (2018)..
Jiang, Y.&Tian, B. Inorganic semiconductor biointerfaces.Nat. Rev. Mater.3, 473–490 (2018)..
Karatum, O. et al. Nanoengineering InP quantum dot-based photoactive biointerfaces for optical control of neurons.Front. Neurosci.15, 652608 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution