1.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2.University of Chinese Academy of Sciences, Beijing 100049, China
3.School of Physics, Beihang University, Beijing 100191, China
4.Songshan Lake Materials Laboratory, Dongguan 523808 Guangdong, China
Yong-Chang Lau (yongchang.lau@iphy.ac.cn)
Jian-Wang Cai (jwcai@iphy.ac.cn)
Bei-Bei Li (libeibei@iphy.ac.cn)
Published:30 November 2024,
Published Online:29 September 2024,
Received:19 March 2024,
Revised:07 September 2024,
Accepted:16 September 2024
Scan QR Code
Hu, Z. G. et al. Picotesla-sensitivity microcavity optomechanical magnetometry. Light: Science & Applications, 13, 2835-2846 (2024).
Hu, Z. G. et al. Picotesla-sensitivity microcavity optomechanical magnetometry. Light: Science & Applications, 13, 2835-2846 (2024). DOI: 10.1038/s41377-024-01643-7.
Cavity optomechanical systems have enabled precision sensing of magnetic fields
by leveraging the optical resonance-enhanced readout and mechanical resonance-enhanced response. Previous studies have successfully achieved mass-produced and reproducible microcavity optomechanical magnetometry (MCOM) by incorporating Terfenol-D thin films into high-quality (
Q
) factor whispering gallery mode (WGM) microcavities. However
the sensitivity was limited to 585 pT Hz
−1/2
over 20 times inferior to those using Terfenol-D particles. In this work
we propose and demonstrate a high-sensitivity and mass
-produced MCOM approach by sputtering a FeGaB thin film onto a high-
Q
SiO
2
WGM microdisk. Theoretical studies are conducted to explore the magnetic actuation constant and noise-limited sensitivity by varying the parameters of the FeGaB film and SiO
2
microdisk. Multiple magnetometers with different radii are fabricated and characterized. By utilizing a microdisk with a radius of 355 μm and a thickness of 1 μm
along with a FeGaB film with a radius of 330 μm and a thickness of 1.3 μm
we have achieved a remarkable peak sensitivity of 1.68 pT Hz
−1/2
at 9.52 MHz. This represents a significant improvement of over two orders of magnitude compared with previous studies employing sputtered Terfenol-D film. Notably
the magnetometer operates without a bias magnetic field
thanks to the remarkable soft magnetic properties of the FeGaB film. Furthermore
as a proof of concept
we have demonstrated the real-time measurement of a pulsed magnetic field simulating the corona current in a high-voltage transmission line using our developed magnetometer. These high-sensitivity magnetometers hold great potential for various applications
such as magnetic induction tomography and corona current monitoring.
Zhao, N. et al. Sensing single remote nuclear spins.Nat. Nanotechnol.7, 657–662 (2012)..
Safronova, M. et al. Search for new physics with atoms and molecules.Rev. Mod. Phys.90, 025008 (2018)..
Savukov, I.&Karaulanov, T. Magnetic-resonance imaging of the human brain with an atomic magnetometer.Appl. Phys. Lett.103, 043703 (2013)..
Xiao, W. et al. A movable unshielded magnetocardiography system.Sci. Adv.9, eadg1746 (2023)..
Pizzo, F. et al. Deep brain activities can be detected with magnetoencephalography.Nat. Commun.10, 971 (2019)..
Edelstein, A. Advances in magnetometry.J. Phys. Condens. Matter19, 165217 (2007)..
Li, Y. et al. Nondestructive inspection and imaging of magnetic hydrogel using the alternating magnetic field infrared thermography.Infrared Phys. Technol.131, 104681 (2023)..
Wickenbrock, A. et al. Magnetic induction tomography using an all-optical87Rb atomic magnetometer.Opt. Lett.39, 6367–6370 (2014)..
Wickenbrock, A. et al. Eddy current imaging with an atomic radio-frequency magnetometer.Appl. Phys. Lett.108, 183507 (2016)..
Hagh, A. K. A., Ashtiani, S. J.&Akmal, A. A. S. A wideband, sensitive current sensor employing transimpedance amplifier as interface to Rogowski coil.Sens. Actuators A Phys.256, 43–50 (2017)..
Lopez, J. D. et al. Fiber-optic current sensor based on FBG and Terfenol-D with magnetic flux concentration for enhanced sensitivity and linearity.IEEE Sens. J.20, 3572–3578 (2020)..
Chen, G. Y.&Newson, T. P. Detection bandwidth of fibre-optic current sensors based on Faraday effect.Electron. Lett.50, 626–627 (2014)..
Xin, E. C.&Yuan, H. W. Development of a sensor for corona current measurement under high-voltage direct-current transmission lines.Int. J. Distrib. Sens. Netw.12, 1550147716664243 (2016)..
Yuan, H. W. et al. Development and application of high-frequency sensor for corona current measurement under ultra high-voltage direct-current environment.IEEE Trans. Instrum. Meas.61, 1064–1071 (2012)..
Tschirhart, C. L. et al. Imaging orbital ferromagnetism in a moiré Chern insulator.Science372, 1323–1327 (2021)..
Dang, H. B., Maloof, A. C.&Romalis, M. V. Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer.Appl. Phys. Lett.97, 151110 (2010)..
Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond.Nature455, 644–647 (2008)..
Bucholtz, F., Dagenais, D. M.&Koo, K. P. High-frequency fibre-optic magnetometer with 70 fT/$$ \sqrt{Hz} $$resolution.Electron. Lett.25, 1719–1721 (1989)..
Yang, J. N. et al. Enhanced emission from a single quantum dot in a microdisk at a deterministic diabolical point.Opt. Express29, 14231–14244 (2021)..
Ba, Q. et al. Conformal optical black hole for cavity.eLight2, 19 (2022)..
Xiang, C. et al. Laser soliton microcombs heterogeneously integrated on silicon.Science373, 99–103 (2021)..
Lei, Y. C. et al. Fully reconfigurable optomechanical add-drop filters.Appl. Phys. Lett.121, 181110 (2022)..
Chang, L., Liu, S. T.&Bowers, J. E. Integrated optical frequency comb technologies.Nat. Photonics16, 95–108 (2022)..
Liu, J. et al. Emerging material platforms for integrated microcavity photonics.Sci. China Phys. Mech. Astron.65, 104201 (2022)..
Jin, M. et al. 1/f-noise-free optical sensing with an integrated heterodyne interferometer.Nat. Commun.12, 1973 (2021)..
Zhi, Y. Y. et al. Single nanoparticle detection using optical microcavities.Adv. Mater.29, 1604920 (2017)..
Tang, S. J. et al. Laser particles with omnidirectional emission for cell tracking.Light Sci. Appl.10, 23 (2021)..
Li, B. B. et al. Single nanoparticle detection using split-mode microcavity Raman lasers.Proc. Natl Acad. Sci. USA111, 14657–14662 (2014)..
Yu, X. C. et al. Single-molecule optofluidic microsensor with interface whispering gallery modes.Proc. Natl Acad. Sci. USA119, e2108678119 (2022)..
Forstner, S. et al. Cavity optomechanical magnetometer.Phys. Rev. Lett.108, 120801 (2012)..
Forstner, S. et al. Ultrasensitive optomechanical magnetometry.Adv. Mater.26, 6348–6353 (2014)..
Yu, C. Q. et al. Optomechanical magnetometry with a macroscopic resonator.Phys. Rev. Appl.5, 044007 (2016)..
Li, B. B. et al. Quantum enhanced optomechanical magnetometry.Optica5, 850–856 (2018)..
Li, B. B. et al. Ultrabroadband and sensitive cavity optomechanical magnetometry.Photonics Res.8, 1064–1071 (2020)..
Zhu, J. G. et al. Polymer encapsulated microcavity optomechanical magnetometer.Sci. Rep.7, 8896 (2017)..
Colombano, M. F. et al. Ferromagnetic resonance assisted optomechanical magnetometer.Phys. Rev. Lett.125, 147201 (2020)..
Li, B. B. et al. Invited article: scalable high-sensitivity optomechanical magnetometers on a chip.APL Photonics3, 120806 (2018)..
Gotardo, F. et al. Waveguide-integrated chip-scale optomechanical magnetometer.Opt. Express31, 37663–37672 (2023)..
Schliesser, A. et al. High-sensitivity monitoring of micromechanical vibration using optical whispering gallery mode resonators.N. J. Phys.10, 095015 (2008)..
Yu, W. Y. et al. Cavity optomechanical spring sensing of single molecules.Nat. Commun.7, 12311 (2016)..
Buchmann, L. et al. Complex squeezing and force measurement beyond the standard quantum limit.Phys. Rev. Lett.117, 030801 (2016)..
Krause, A. G. et al. A high-resolution microchip optomechanical accelerometer.Nat. Photonics6, 768–772 (2012)..
Guzmáan Cervantes, F. et al. High sensitivity optomechanical reference accelerometer over 10 kHz.Appl. Phys. Lett.104, 221111 (2014)..
Yang, H. et al. High-sensitivity air-coupled megahertz-frequency ultrasound detection using on-chip microcavities.Phys. Rev. Appl.18, 034035 (2022)..
Yang, H. et al. Micropascal-sensitivity ultrasound sensors based on optical microcavities.Photonics Res.11, 1139–1147 (2023)..
Tang, S. J. et al. Single-particle photoacoustic vibrational spectroscopy using optical microresonators.Nat. Photonics17, 951–956 (2023)..
Meng, J. W. et al. Dissipative acousto-optic interactions in optical microcavities.Phys. Rev. Lett.129, 073901 (2022)..
Dong, C. Z. et al. Characterization of magnetomechanical properties in FeGaB thin films.Appl. Phys. Lett.113, 262401 (2018)..
Lou, J. et al. Soft magnetism, magnetostriction, and microwave properties of FeGaB thin films.Appl. Phys. Lett.91, 182504 (2007)..
Lou, J. et al. Giant electric field tuning of magnetism in novel multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) heterostructures.Adv. Mater.21, 4711–4715 (2009)..
McRae, T. G. et al. Thermo-optic locking of a semiconductor laser to a microcavity resonance.Opt. Express17, 21977–21985 (2009)..
Bowen, W. P.&Milburn, G. J.Quantum Optomechanics(CRC Press, Boca Raton, 2015).
Aspelmeyer, M., Kippenberg, T. J.&Marquardt, F. Cavity optomechanics.Rev. Mod. Phys.86, 1391–1452 (2014)..
Bowen, W. P.&Yu, C. Q. Cavity optomechanical magnetometers. InHigh Sensitivity Magnetometers(eds Grosz, A., Haji-Sheikh, M. J.&Mukhopadhyay, S. C. ) 313–338 (Springer, Cham, 2017).
Yu, Y. M. et al. Modelling of cavity optomechanical magnetometers.Sensors18, 1558 (2018)..
Hathaway, K. B., Clark, A. E.&Teter, J. P. Magnetomechanical damping in giant magnetostriction alloys.Metall. Mater. Trans. A26, 2797–2801 (1995)..
Mech, R.&Kaleta, J. Influence of Terfenol-D powder volume fraction in epoxy matirx composites on their magnetomechanical properies.Acta Mech. Autom.11, 233–236 (2017)..
Javid, U. A. et al. Cavity optomechanical sensing in the nonlinear saturation limit.Laser Photonics Rev.15, 2100166 (2021)..
Hu, Y. et al. Generation of optical frequency comb via giant optomechanical oscillation.Phys. Rev. Lett.127, 134301 (2021)..
Schliesser, A. et al. Resolved-sideband cooling of a micromechanical oscillator.Nat. Phys.4, 415–419 (2008)..
Krause, A. G. et al. Nonlinear radiation pressure dynamics in an optomechanical crystal.Phys. Rev. Lett.115, 233601 (2015)..
Wang, P.&Zhang, G. X. The measurement method for corona discharge current under high-voltage environment.IEEE Trans. Instrum. Meas.57, 1786–1790 (2008)..
Wang, C. et al. Pulse current of multi-needle negative corona discharge and its electromagnetic radiation characteristics.Energies11, 3120 (2018)..
Spetzler, B. et al. Exchange biased delta-E effect enables the detection of low frequencypT magnetic fields with simultaneous localization.Sci. Rep.11, 5269 (2021)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution