1.Holonyak Micro and Nanotechnology Laboratory and Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
2.Illinois Quantum Information Science and Technology Center, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Kejie Fang (kfang3@illinois.edu)
Published:31 December 2024,
Published Online:15 October 2024,
Received:02 June 2024,
Revised:17 September 2024,
Accepted:24 September 2024
Scan QR Code
Akin, J. et al. InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation. Light: Science & Applications, 13, 3090-3098 (2024).
Akin, J. et al. InGaP χ(2) integrated photonics platform for broadband, ultra-efficient nonlinear conversion and entangled photon generation. Light: Science & Applications, 13, 3090-3098 (2024). DOI: 10.1038/s41377-024-01653-5.
Nonlinear optics plays an important role in many areas of science and technology. The advance of nonlinear optics is empowered by the discovery and utilization of materials with growing optical nonlinearity. Here we demonstrate an indium gallium phosphide (InGaP) integrated photonics platform for broadband
ultra-efficient second-order nonlinear optics. The InGaP nanophotonic waveguide enables second-harmonic generation with a normalized efficiency of 128
000%/W/cm
2
at 1.55
μ
m pump wavelength
nearly two orders of magnitude higher than the state of the art in the telecommunication C band. Further
we realize an ultra-bright
broadband time-energy entangled photon source with a pair generation rate of 97 GHz/mW and a bandwidth of 115 nm centered at the telecommunication C band. The InGaP entangled photon source shows high coincidence-to-accidental counts ratio CAR
>
10
4
and two-photon interference visibility
>
98%. The InGaP second-order nonlinear photonics platform will have wide-ranging implications for non-classical light generation
optical signal processing
and quantum networking.
Franken, P. A. et al. Generation of optical harmonics.Phys. Rev. Lett.7, 118–119 (1961)..
Lu, J. J. et al. Toward 1% single-photon anharmonicity with periodically poled lithium niobate microring resonators.Optica7, 1654–1659 (2020)..
Zhao, M. D.&Fang, K. J. InGaP quantum nanophotonic integrated circuits with 1.5% nonlinearity-to-loss ratio.Optica9, 258–263 (2022)..
Zhao, J. et al. High quality entangled photon pair generation in periodically poled thin-film lithium niobate waveguides.Phys. Rev. Lett.124, 163603 (2020)..
Vahlbruch, H. et al. Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency.Phys. Rev. Lett.117, 110801 (2016)..
Ledezma, L. et al. Intense optical parametric amplification in dispersion-engineered nanophotonic lithium niobate waveguides.Optica9, 303–308 (2022)..
Guo, X. et al. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes.Phys. Rev. Lett.117, 123902 (2016)..
Vyas, K. et al. Group Ⅲ-Ⅴ semiconductors as promising nonlinear integrated photonic platforms.Adv. Phys.: X7, 2097020 (2022)..
Ohashi, M. et al. Determination of quadratic nonlinear optical coefficient of AlxGa1−xAs system by the method of reflected second harmonics.J. Appl. Phys.74, 596–601 (1993)..
Michael, C. et al. Wavelength- and material-dependent absorption in GaAs and AlGaAs microcavities.Appl. Phys. Lett.90, 051108 (2007)..
Lin, L.&Robertson, J. Passivation of interfacial defects at Ⅲ-Ⅴ oxide interfaces.J. Vac. Sci. Technol. B30, 04E101 (2012)..
Placke, M. et al. Telecom-Band Spontaneous Parametric Down-Conversion in AlGaAs-on-Insulator Waveguides.Laser Photonics Rev.18, 2301293 (2024)..
Pan, N. et al. High reliability InGaP/GaAs HBT.IEEE Electron Device Lett.19, 115–117 (1998)..
Takamoto, T. et al. InGaP/GaAs-based multijunctionsolar cells.Prog. Photovoltaics: Res. Appl.13, 495–511 (2005)..
Jiang, J. et al. High detectivity InGaAs/InGaP quantum-dot infrared photodetectors grown by low pressure metalorganic chemical vapor deposition.Appl. Phys. Lett.84, 2166–2168 (2004)..
Svensson, C. P. T. et al. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon.Nanotechnology19, 305201 (2008)..
Eckhouse, V. et al. Highly efficient four wave mixing in GaInP photonic crystal waveguides.Opt. Lett.35, 1440–1442 (2010)..
Colman, P. et al. Temporal solitons and pulse compression in photonic crystal waveguides.Nat. Photonics4, 862–868 (2010)..
Dave, U. D. et al. Dispersive-wave-based octave-spanning supercontinuum generation in InGaP membrane waveguides on a silicon substrate.Opt. Lett.40, 3584–3587 (2015)..
Marty, G. et al. Photonic crystal optical parametric oscillator.Nat. Photonics15, 53–58 (2021)..
Chopin, A. et al. Ultra-efficient generation of time-energy entangled photon pairs in an InGaP photonic crystal cavity.Commun. Phys.6, 77 (2023)..
Ueno,Y., Ricci, V.&Stegeman, G. I. Second-order susceptibility of Ga0.5In0.5P crystals at 1.5μm and their feasibility for waveguide quasi-phase matching.J. Opt. Soc. Am. B14, 1428–1436 (1997)..
Poulvellarie, N. et al. Efficient type Ⅱ second harmonic generation in an indium gallium phosphide on insulator wire waveguide aligned with a crystallographic axis.Opt. Lett.46, 1490–1493 (2021)..
Amores, A. P.&Swillo, M. Low-Temperature Bonding of Nanolayered InGaP/SiO2 Waveguides for Spontaneous-Parametric Down Conversion.ACS Appl. Nano Mater.5, 2550–2557 (2022)..
Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides.Optica5, 1438–1441 (2018)..
Chen, P. K. et al. Adapted poling to break the nonlinear efficiency limit in nanophotonic lithium niobate waveguides.Nat. Nanotechnol.19, 44–50 (2024)..
Dave, U. D. et al. Nonlinear properties of dispersion engineered InGaP photonic wire waveguides in the telecommunication wavelength range.Opt. Express23, 4650–4657 (2015)..
Guha, B. et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106.Optica4, 218–221 (2017)..
Luo, R. et al. Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide.Optica5, 1006–1011 (2018)..
Kumar, R.&Ghosh, J. Parametric down-conversion in ppLN ridge waveguide: a quantum analysis for efficient twin photons generation at 1550 nm.J. Opt.20, 075202 (2018)..
Javid, U. A. et al. Ultrabroadband entangled photons on a nanophotonic chip.Phys. Rev. Lett.127, 183601 (2021)..
Clausen, C. et al. A source of polarization-entangled photon pairs interfacing quantum memories with telecom photons.N. J. Phys.16, 093058 (2014)..
Brendel, J., Mohler, E.&Martienssen, W. Time-resolved dual-beam two-photon interferences with high visibility.Phys. Rev. Lett.66, 1142–1145 (1991)..
Clauser, J. F.&Horne, M. A. Experimental consequences of objective local theories.Phys. Rev. D.10, 526–535 (1974)..
Wengerowsky, S. et al. An entanglement-based wavelength-multiplexed quantum communication network.Nature564, 225–228 (2018)..
Zhang, Z. D. et al. Entangled photons enabled time-frequency-resolved coherent Raman spectroscopy and applications to electronic coherences at femtosecond scale.Light Sci. Appl.11, 274 (2022)..
Nehra, R. et al. Few-cycle vacuum squeezing in nanophotonics.Science377, 1333–1337 (2022)..
Stokowski, H. S. et al. Integrated quantum optical phase sensor in thin film lithium niobate.Nat. Commun.14, 3355 (2023)..
Riemensberger, J. et al. A photonic integrated continuous-travelling-wave parametric amplifier.Nature612, 56–61 (2022)..
Yanagimoto, R. et al. Temporal trapping: a route to strong coupling and deterministic optical quantum computation.Optica9, 1289–1296 (2022)..
Majid, M. et al. First demonstration of InGaP/InAlGaP based orange laser emitting at 608 nm.Electron. Lett.51, 1102–1104 (2015)..
Jin, H. et al. On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits.Phys. Rev. Lett.113, 103601 (2014)..
Pernice, W. H. P. et al. Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators.Appl. Phys. Lett.100, 223501 (2012)..
Wang, C. et al. Second harmonic generation in nano-structured thin-film lithium niobate waveguides.Opt. Express25, 6963–6973 (2017)..
Sanford, N. A. et al. Measurement of second order susceptibilities of GaN and AlGaN.J. Appl. Phys.97, 053512 (2005)..
Sato, H. et al. Accurate measurements of second-order nonlinear optical coefficients of 6H and 4H silicon carbide.J. Opt. Soc. Am. B26, 1892–1896 (2009)..
Shoji, I. et al. Absolute scale of second-order nonlinear-optical coefficients.J. Opt. Soc. Am. B14, 2268–2294 (1997)..
May, S. et al. Second-harmonic generation in AlGaAs-on-insulator waveguides.Opt. Lett.44, 1339–1342 (2019)..
Pantzas, K. et al. Continuous-wave second-harmonic generation in orientation-patterned gallium phosphide waveguides at telecom wavelengths.ACS Photonics9, 2032–2039 (2022)..
Zheng, Y. et al. Efficient second-harmonic generation in silicon carbide nanowaveguides.Proceedings of 2022 Conference on Lasers and Electro-Optics. San Jose, CA, USA: IEEE 2022, 1–2.
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution