1.Department of Engineering Science, University of Oxford, Oxford, UK
2.Guangdong Research Center of Polarization Imaging and Measurement Engineering Technology, Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
3.College of Engineering, Peking University, Beijing, China
An Aloysius Wang (aw6609@princeton.edu)
Chao He (chao.he@eng.ox.ac.uk)
Published:31 December 2024,
Published Online:22 November 2024,
Received:20 August 2024,
Revised:10 October 2024,
Accepted:11 October 2024
Scan QR Code
Wang, A. A. et al. Topological protection of optical skyrmions through complex media. Light: Science & Applications, 13, 3236-3252 (2024).
Wang, A. A. et al. Topological protection of optical skyrmions through complex media. Light: Science & Applications, 13, 3236-3252 (2024). DOI: 10.1038/s41377-024-01659-z.
Optical Skyrmions have many important properties that make them ideal units for high-density data applications
including the ability to carry digital information through a discrete topological number and the independence of spatially varying polarization to other dimensions. More importantly
the topological nature of the optical Skyrmion heuristically suggests a strong degree of robustness to perturbations
which is crucial for reliably carrying information in noisy environments. However
the study of the topological robustness of optical Skyrmions is still in its infancy. Here
we quantify this robustness precisely by proving that the topological nature of the Skyrmion arises from its structure on the boundary and
by duality
is resilient to spatially varying perturbations provided they respect the relevant boundary conditions of the unperturbed Skyrmion. We then present experimental evidence validating this robustness in the context of paraxial Skyrmion beams against complex polarization aberrations. Our work provides a framework for handling various perturbations of Skyrmion fields and offers guarantees of robustness in a general sense. This
in turn
has implications for applications of the Skyrmion where their topological nature is exploited explicitly
and
in particular
provides an underpinning for the use of optical Skyrmions in communications and computing.
Nagaosa, N.&Tokura, Y. Topological properties and dynamics of magnetic skyrmions.Nat. Nanotechnol.8, 899–911 (2013)..
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal.Nature465, 901–904 (2010)..
Shi, P., Du, L. P.&Yuan, X. C. Spin photonics: from transverse spin to photonic skyrmions.Nanophotonics10, 3927–3943 (2021)..
Fert, A., Reyren, N.&Cros, V. Magnetic skyrmions: advances in physics and potential applications.Nat. Rev. Mater.2, 17031 (2017)..
Cortés-Ortuño, D. et al. Thermal stability and topological protection of skyrmions in nanotracks.Sci. Rep.7, 4060 (2017)..
Je, S. G. et al. Direct demonstration of topological stability of magnetic skyrmions via topology manipulation.ACS Nano14, 3251–3258 (2020)..
Kang, W. et al. Voltage controlled magnetic skyrmion motion for racetrack memory.Sci. Rep.6, 23164 (2016)..
Song, K. M. et al. Skyrmion-based artificial synapses for neuromorphic computing.Nat. Electron.3, 148–155 (2020)..
Zhang, X. C., Ezawa, M.&Zhou, Y. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions.Sci. Rep.5, 9400 (2015)..
Tsesses, S. et al. Optical skyrmion lattice in evanescent electromagnetic fields.Science361, 993–996 (2018)..
Gao, S. J. et al. Paraxial skyrmionic beams.Phys. Rev. A102, 053513 (2020)..
Du, L. P. et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum.Nat. Phys.15, 650–654 (2019)..
Shen, Y. J., Martínez, E. C.&Rosales-Guzmán, C. Generation of optical skyrmions with tunable topological textures.ACS Photonics9, 296–303 (2022)..
He, C., Shen, Y. J.&Forbes, A. Towards higher-dimensional structured light.Light Sci. Appl.11, 205 (2022)..
Shen, Y. J. et al. Optical skyrmions and other topological quasiparticles of light.Nat. Photonics18, 15–25 (2024)..
Bai, C. Y. et al. Dynamic tailoring of an optical skyrmion lattice in surface plasmon polaritons.Opt. Express28, 10320–10328 (2020)..
Lin, W. B. et al. Microcavity-based generation of full Poincaré beams with arbitrary skyrmion numbers.Phys. Rev. Res.3, 023055 (2021)..
Shen, Y. J. et al. Supertoroidal light pulses as electromagnetic skyrmions propagating in free space.Nat. Commun.12, 5891 (2021)..
Cisowski, C., Ross, C.&Franke-Arnold, S. Building paraxial optical skyrmions using rational maps.Adv. Photonics Res.4, 2200350 (2023)..
He, C. et al. Complex vectorial optics through gradient index lens cascades.Nat. Commun.10, 4264 (2019)..
Shi, P., Du, L. P.&Yuan, X. C. Strongspin–orbit interaction of photonic skyrmions at the general optical interface.Nanophotonics9, 4619–4628 (2020)..
Lei, X. R. et al. Photonic spin lattices: symmetry constraints for skyrmion and meron topologies.Phys. Rev. Lett.127, 237403 (2021)..
Liu, C. X. et al. Disorder-induced topological state transition in the optical skyrmion family.Phys. Rev. Lett.129, 267401 (2022)..
Ye, Z. et al. Theoryof paraxial optical skyrmions.Proc. R. Soc. A Math. Phys. Eng. Sci.480, 20240109 (2024)..
Shen, Y. J. et al. Topologically controlled multiskyrmions in photonic gradient-index lenses.Phys. Rev. Appl.21, 024025 (2024)..
Skyrme, T. H. R. A non-linear field theory.Proc. R. Soc. A Math. Phys. Eng. Sci.260, 127–138 (1961)..
Evans, L. C.Partial Differential Equations2nd edn, (American Mathematical Society, 2010).
Ornelas, P. et al. Non-local skyrmions as topologically resilient quantum entangled states of light.Nat. Photonics18, 258–266 (2024)..
Ornelas, P. et al. Topological rejection of noise by non-local quantum skyrmions. Print athttps://doi.org/10.48550/arXiv.2403.02031https://doi.org/10.48550/arXiv.2403.02031(2024).
He, C. et al. A universal optical modulator for synthetic topologically tuneable structured matter. Print athttps://doi.org/10.48550/arXiv.2311.18148https://doi.org/10.48550/arXiv.2311.18148(2023).
Teng, H. A. et al. Physical conversion and superposition of optical skyrmion topologies.Photonics Res.11, 2042–2053 (2023)..
Al Khawaja, U.&Stoof, H. Skyrmions in a ferromagnetic Bose–Einstein condensate.Nature411, 918–920 (2001)..
Meng, F. F. et al. Measuring the magnetic topological spin structure of light using an anapole probe.Light Sci. Appl.11, 287 (2022)..
Durrer, R., Kunz, M.&Melchiorri, A. Cosmic structure formation with topological defects.Phys. Rep.364, 1–81 (2002)..
Smirnova, D. A., Nori, F.&Bliokh, K. Y. Water-wave vortices and skyrmions.Phys. Rev. Lett.132, 054003 (2024)..
Foster, D. et al. Two-dimensional skyrmion bags in liquid crystals and ferromagnets.Nat. Phys.15, 655–659 (2019)..
Ge, H. et al. Observation of acoustic skyrmions.Phys. Rev. Lett.127, 144502 (2021)..
Muelas-Hurtado, R. D. et al. Observation of polarization singularities and topological textures in sound waves.Phys. Rev. Lett.129, 204301 (2022)..
Cao, L. Y. et al. Observation of phononic skyrmions based on hybrid spin of elastic waves.Sci. Adv.9, eadf3652 (2023)..
Yang, B. et al. Scalar topological photonic nested meta-crystals and skyrmion surface states in the light cone continuum.Nat. Mater.22, 1203–1209 (2023)..
Uhlenbeck, K. K. Removable singularities in Yang-Mills fields.Commun. Math. Phys.83, 11–29 (1982)..
Belavin, A. A. et al. Pseudoparticle solutions of the yang-mills equations.Phys. Lett. B59, 85–87 (1975)..
Kinsey, L. C.Topology of Surfaces(Springer, 2012).
Chipman, R. A., Lam, W. S. T.&Young, G.Polarized Light and Optical Systems(CRC Press, 2018).
McGuire, J. P.&Chipman, R. A. Polarization aberrations. 1. Rotationally symmetric optical systems.Appl. Opt.33, 5080–5100 (1994)..
He, C., Antonello, J.&Booth, M. J. Vectorial adaptive optics.eLight3, 23 (2023)..
He, C. et al. Polarisation optics for biomedical and clinical applications: a review.Light Sci. Appl.10, 194 (2021)..
Gödecke, M. L., Frenner, K.&Osten, W. Model-based characterisation of complex periodic nanostructures by white-light Mueller-matrix Fourier scatterometry.Light Adv. Manuf.2, 237–250 (2021)..
Wen, S. et al. Metasurface array for single-shot spectroscopic ellipsometry.Light Sci. Appl.13, 88 (2024)..
Chen, C. et al. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces.Light Sci. Appl.12, 288 (2023)..
Hu, Q. et al. Arbitrary vectorial state conversion using liquid crystal spatial light modulators.Opt. Commun.459, 125028 (2020)..
Naber, G. L.Topology, Geometry and Gauge fields Interactions2nd edn (Springer, 2011).
Lu, S. Y.&Chipman, R. A. Homogeneous and inhomogeneous Jones matrices.J. Opt. Soc. Am. A11, 766–773 (1994)..
Gil, J. J. et al.Polarized light and the Mueller Matrix Approach2nd edn (CRC Press, 2022).
Ossikovski, R. Analysis of depolarizing Mueller matrices through a symmetric decomposition.J. Opt. Soc. Am. A26, 1109–1118 (2009)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution