
无数据
1.Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Republic of Korea
2.Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Republic of Korea
3.Center for Quantum Technology, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
4.Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon, Republic of Korea
5.Department of MetaBioHealth, Sungkyunkwan University, Suwon, Republic of Korea
Inki Kim (inki.kim@skku.edu)
Received:19 November 2024,
Revised:2025-05-16,
Accepted:21 May 2025,
Published Online:13 October 2025,
Published:30 November 2025
Scan QR Code
Jo, Y. et al. Image scanning microscopy based on multifocal metalens for sub-diffraction-limited imaging of brain organoids. Light: Science & Applications, 14, 3765-3780 (2025).
Jo, Y. et al. Image scanning microscopy based on multifocal metalens for sub-diffraction-limited imaging of brain organoids. Light: Science & Applications, 14, 3765-3780 (2025). DOI: 10.1038/s41377-025-01900-3.
Image scanning microscopy (ISM) is a promising imaging technique that offers sub-diffraction-limited
resolution and optical sectioning. Theoretically
ISM can improve the optical resolution by a factor of two through pixel reassignment and deconvolution. Multifocal array illumination and scanning have been widely adopted to implement ISM because of their simplicity. Conventionally
digital micromirror devices (DMDs)
1
1
and microlens arrays (MLAs)
2
2
3
3
have been used to generate dense and uniform multifocal arrays for ISM
which are critical for achieving fast imaging and high-quality ISM reconstruction. However
these approaches have limitations in terms of cost
numerical aperture (NA)
pitch
and uniformity
making it challenging to create dense and high-quality multifocal arrays at high NA. To overcome these limitations
we introduced a novel multifocal metalens design strategy called the hybrid multiplexing method
which combines two conventional multiplexing approaches: phase addition and random multiplexing. Through numerical simulations
we demonstrate that the proposed method generates more uniform and denser multifocal arrays than conventional methods
even at small pitches. As a proof of concept
we fabricated a multifocal metalens generating 40 × 40 array of foci with a 3 μm pitch and NA of 0.7 operating at a wavelength of 488 nm and then constructed the multifocal metalens-based ISM (MMISM). We demonstrated that MMISM successfully resolved sub-diffraction-limited features in imaging of microbead samples and forebrain organoid sections. The results showed that MMISM imaging achieved twice the diffraction-limited resolution and revealed clearer structural features of neurons compared to wide-field images. We anticipate that our novel design strategy can be widely applied to produce multifunctional optical elements and replace conventional optical elements in specialized applications.
Wu, J. J. et al. Resolution improvement of multifocal structured illumination microscopy with sparse Bayesian learning algorithm. Opt. Express 26 , 31430–31438 (2018)..
Yoon, K. et al. Simultaneous multicolor multifocal scanning microscopy. ACS Photonics 10 , 3035–3041 (2023)..
Tadesse, K. et al. Three-dimensional multifocal scanning microscopy for super-resolution cell and tissue imaging. Opt. Express 31 , 38550–38559 (2023)..
Müller, C. B. & Enderlein, J. Image scanning microscopy. Phys. Rev. Lett. 104 , 198101 (2010)..
Gregor, I. & Enderlein, J. Image scanning microscopy. Curr. Opin. Chem. Biol. 51 , 74–83 (2019)..
Castello, M. et a l. Image scanning microscopy with a quadrant detector. Opt. Lett. 40 , 5355–5358 (2015)..
Sheppard, C. J. R., Mehta, S. B. & Heintzmann, R. Superresolution by image scanning microscopy using pixel reassignment. Opt. Lett. 38 , 2889–2892 (2013)..
McGregor, J. E., Mitchell, C. A. & Hartell, N. A. Post-processing strategies in image scanning microscopy. Methods 88 , 28–36 (2015)..
Sheppard, C. J. R. & Choudhury, A. Image formation in the scanning microscope. Opt. Acta. Int. J. Opt. 24 , 1051–1073 (1977)..
Castello, M. et al. A robust and versatile platform for image scanning microscopy enabling super-resolution FLIM. Nat. Methods 16 , 175–178 (2019)..
York, A. G. et al. Resolution doubling in live, multicellular organisms via multifocal structured illumination microscopy. Nat. Methods 9 , 749–754 (2012)..
Radmacher, N. et al. Doubling the resolution of fluorescence-lifetime single-molecule localization microscopy with image scanning microscopy. Nat. Photonics 8 , 1059–1066 (2024)..
Moore, S. et al. Experimental study of polymer microlens fabrication using partial-filling hot embossing technique. Microelectron. Eng. 162 , 57–62 (2016)..
Zhang, Q. S. et al. Fabrication of Microlens arrays with high quality and high fill factor by inkjet printing. Adv. Opt. Mater. 10 , 2200677 (2022)..
Liu, Z. H. et al. Mold-free self-assembled scalable microlens arrays with ultrasmooth surface and record-high resolution. Light Sci. Appl. 12 , 143 (2023)..
Zhu, X. Y. et al. Fabrication of high numerical aperture micro-lens array based on drop-on-demand generating of water-based molds. Opt. Laser Technol. 68 , 23–27 (2015)..
Zhou, W. J. et al. Fabrication of microlens array on chalcogenide glass by wet etching-assisted femtosecond laser direct writing. Ceram. Int. 48 , 18983–18988 (2022)..
Zheng, X. R. et al. Visible light waveband Dammann grating based on all-dielectric metasurface. Appl. Opt. 61 , 2184–2191 (2022)..
Zhang, Q. Y. et al. Inverse design of polarization-insensitive C-band Dammann grating based on dielectric metasurface. Results Phys. 45 , 106238 (2023)..
Wu, C. Y. et al. Polarization multiplexing Dammann grating based on all-dielectric metasurface. IEEE Photonics J. 16 , 4600207 (2024)..
Bai, W. et al. Actively tunable metalens array based on patterned phase change materials. Appl. Sci. 9 , 4927 (2019)..
Fan, Z. B. et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl. 8 , 67 (2019)..
Wang, R. X. et al. Compact multi-foci metalens spectrometer. Light Sci. Appl. 12 , 103 (2023)..
Cao, R. et al. Optical-resolution photoacoustic microscopy with a needle-shaped beam. Nat. Photonics 17 , 89–95 (2023)..
Li, S. W. et al. Rapid 3D image scanning microscopy with multi-spot excitation and double-helix point spread function detection. Opt. Express 26 , 23585–23593 (2018)..
Katz, B. et al. Enhanced resolution and throughput of Fresnel incoherent correlation holography (FINCH) using dual diffractive lenses on a spatial light modulator (SLM). Opt. Express 20 , 9109–9121 (2012)..
Davis, J. A. et al. Multiplexing onto a spatial light modulator using random binary patterns. Opt. Eng. 62 , 103104 (2023)..
Zhao, Z. X. et al. Organoids. Nat. Rev. Methods Prim. 2 , 94 (2022)..
Caceres, A. et al. Immunocytochemical localization of actin and microtubule-associated protein MAP2 in dendritic spines. Proc. Natl Acad. Sci. USA 80 , 1738–1742 (1983)..
Izant, J. G. & McIntosh, J. R. Microtubule-associated proteins: a monoclonal antibody to MAP2 binds to differentiated neurons. Proc. Natl Acad. Sci. USA 77 , 4741–4745 (1980)..
Grundke-Iqbal, I. et al. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad. Sci. USA 83 , 4913–4917 (1986)..
Jo, Y. et al. Spectral Hadamard microscopy with metasurface-based patterned illumination. Nanophotonics 14 , 1171–1183 (2025)..
Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368 , 1487–1490 (2020)..
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14 , 227–231 (2019)..
Amin, M. J. et al. Localization precision in chromatic multifocal imaging. J. Optical Soc. Am. B 38 , 2792–2798 (2021)..
Lin, D. M. et al. Photonic multitasking interleaved Si nanoantenna phased array. Nano Lett. 16 , 7671–7676 (2016)..
Barulin, A. et al. Dual-wavelength UV-visible metalens for multispectral photoacoustic microscopy: a simulation study. Photoacoustics 32 , 100545 (2023)..
Duan, G. H. et al. Theoretical design of a bionic spatial 3D-arrayed multifocal metalens. Biomimetics 7 , 200 (2022)..
Holsteen, A. L. et al. A light-field metasurface for high-resolution single-particle tracking. Nano Lett. 19 , 2267–2271 (2019)..
Wang, X. H. et al. A holographic broadband achromatic metalens. Laser Photonics Rev. 18 , 2300880 (2024)..
Barulin, A. et al. Axially multifocal metalens for 3D volumetric photoacoustic imaging of neuromelanin in live brain organoid. Sci. Adv. 11 , eadr0654 (2025)..
Egede Johansen, V. et al. Nanoscale precision brings experimental metalens efficiencies on par with theoretical promises. Commun. Phys. 7 , 123 (2024)..
Yang, M. Y. et al. High focusing efficiency metalens with large numerical aperture at terahertz frequency. Opt. Lett. 48 , 4677–4680 (2023)..
Arbabi, A. et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique. Sci. Rep. 10 , 7124 (2020)..
Chung, H. & Miller, O. D. High-NA achromatic metalenses by inverse design. Opt. Express 28 , 6 945–6965 (2020)..
Ufimtsev, P. Y. Fundamentals Of The Physical Theory Of Diffraction. (Hoboken: John Wiley&Sons, 2014).
Bouwkamp, C. J. Diffraction theory. Rep. Prog. Phys. 17 , 35 (1954)..
Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11 , 1991 (2020)..
Amin, M. J. et al. Multicolor multifocal 3D microscopy using in-situ optimization of a spatial light modulator. Sci. Rep. 12 , 16343 (2022)..
Huang, L. L. et al. Dispersionless phase discontinuities for controlling light propagation. Nano Lett. 12 , 5750–5755 (2012)..
Jiang, S. C. et al. High-efficiency generation of circularly polarized light via symmetry-induced anomalous reflection. Phys. Rev. B 91 , 125421 (2015)..
Badloe, T. et al. Bright-field and edge-enhanced imaging using an electrically tunable dual-mode metalens. ACS Nano 17 , 14678–14685 (2023)..
Badloe, T. et al. Electrically tunable bifocal metalens with diffraction‐limited focusing and imaging at visible wavelengths. Adv. Sci. 8 , 2102646 (2021)..
Balthasar Mueller, J. P. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118 , 113901 (2017)..
Yang, Y. et al. Revealing structural disorder in hydrogenated amorphous silicon for a low‐loss photonic platform at visible frequencies. Adv. Mater. 33 , 2005893 (2021)..
Visser, N. V. et al. Circular dichroism spectroscopy of fluorescent proteins. FEBS Lett. 521 , 31–35 (2002)..
Khorasaninejad, M. et al. Multispectral chiral imaging with a metalens. Nano Lett. 16 , 4595–4600 (2016)..
Waszczuk, L. et al. Determination of scattering coefficient and scattering anisotropy factor of tissue-mimicking phantoms using line-field confocal optical coherence tomography (LC-OCT). J. Eur. Opt. Soc. Rapid Publ. 19 , 39 (2023)..
Dunn, A. K. et al. Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl. Opt. 39 , 1194–1201 (2000)..
Marcos-Vidal, A. & Ripoll, J. Recent advances in optical tomography in low scattering media. Opt. Lasers Eng. 135 , 106191 (2020)..
Wang, H. R. et al. UCsim2: two-dimensionally structured illumination microscopy using UC2. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 380 , 20200148 (2022)..
Li, B. W. et al. Deep-3D microscope: 3D volumetric microscopy of thick scattering samples using a wide-field microscope and machine learning. Biomed. Opt. Express 13 , 284–299 (2021)..
Senft, R. A. et al. A biologist's guide to planning and performing quantitative bioimaging experiments. PLoS Biol. 21 , e3002167 (2023)..
Steyer, G. J. et al. Removal of out-of-plane fluorescence for single cell visualization and quantification in cryo-imaging. Ann. Biomed. Eng. 37 , 1613–1628 (2009)..
She, A. L. et al. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26 , 1573–1585 (2018)..
Park, J. S. et al. All-glass 100 mm diameter visible metalens for imaging the cosmos. ACS Nano 18 , 3187–3198 (2024)..
Park, J. S. et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett. 19 , 8673–8682 (2019)..
Kim, J. et al. Scalable manufacturing of high-index atomic layer–polymer hybrid metasurfaces for metaphotonics in the visible. Nat. Mater. 22 , 474–481 (2023)..
Jo, Y. et al. Advanced biological imaging techniques based on metasurfaces. Opto-Electron. Adv. 7 , 240122 (2024)..
Barulina, E. et al. Dual-wavelength on-chip integrated metalens for epi-fluorescence single-molecule sensing. Sensors 24 , 7781 (2024)..
Barulin, A. et al. Dual-wavelength metalens enables epi-fluorescence detection from single molecules. Nat. Commun. 15 , 26 (2024)..
Wang, Y. J. et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun. 12 , 5560 (2021)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13 , 220–226 (2018)..
Hu, Y. Q. et al. Asymptotic dispersion engineering for ultra-broadband meta-optics. Nat. Commun. 14 , 6649 (2023)..
Yao, J. et al. Nonlocal meta-lens with Huygens' bound states in the continuum. Nat. Commun. 15 , 6543 (2024)..
Lee, Y. U. et al. Metamaterial assisted illumination nanoscopy via random super-resolution speckles. Nat. Commun. 12 , 1559 (2021)..
Lee, Y. U. et al. Hyperbolic material enhanced scattering nanoscopy for label-free super-resolution imaging. Nat. Commun. 13 , 6631 (2022)..
Lu, D. & Liu, Z. W. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3 , 1205 (2012)..
Lee, D. et al. Realization of wafer-scale hyperlens device for sub-diffractional biomolecular imaging. ACS Photonics 5 , 2549–2554 (2018)..
Zhang, X. & Liu, Z. W. Superlenses to overcome the diffraction limit. Nat. Mater. 7 , 435–441 (2008)..
Li, W. L. et al. Super-resolution multicolor fluorescence microscopy enabled by an apochromatic super-oscillatory lens with extended depth-of-focus. Nat. Commun. 14 , 5107 (2023)..
Qin, F. et al. A supercritical lens optical label-free microscopy: sub-diffraction resolution and ultra-long working distance. Adv. Mater. 29 , 1602721 (2017)..
Dai, X. M. et al. Holographic super-resolution metalens for achromatic sub-wavelength focusing. ACS Photonics 8 , 2294–2303 (2021)..
Karunamuni, G. H. et al. Capturing structure and function in an embryonic heart with biophotonic tools. Front. Physiol. 5 , 351 (2014)..
Graf, B. W.&Boppart, S. A. Imaging and analysis of three-dimensional cell culture models. In live cell imaging: methods and protocols (ed. Papkovsky, D. B. ) (New York: Humana Press), 211–227 (2010).
Smithpeter, C. L. et al. Penetration depth limits of in vivo confocal reflectance imaging. Appl. Opt. 37 , 2749–2754 (1998)..
Clark, A. L. et al. Confocal microscopy for real-time detection of oral cavity neoplasia. Clin. Cancer Res. 9 , 4714–4721 (2003)..
Deng, X. Y. & Gu, M. Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation. Appl. Opt. 42 , 3321–3329 (2003)..
Obeidy, P., Tong, P. L. & Weninger, W. Research techniques made simple: two-photon intravital imaging of the skin. J. Investig. Dermatol. 138 , 720–725 (2018)..
Kim, C. & Lee, B. TORCWA: GPU-accelerated Fourier modal method and gradient-based optimization for metasurface design. Comput. Phys. Commun. 282 , 108552 (2023)..
Winter, P. W. et al. Two-photon instant structured illumination microscopy improves the depth penetration of super-resolution imaging in thi ck scattering samples. Optica 1 , 181–191 (2014)..
Roth, S. et al. Optical photon reassignment microscopy (OPRA). Opt. Nanoscopy 2 , 5 (2013)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621