
无数据
1.School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
2.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei, China
3.Optics Valley Laboratory, Wuhan, Hubei, China
4.Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Manufacturing Equipment Digitization, Dongguan, Guangdong, China
Honggang Gu (hongganggu@hust.edu.cn)
Shiyuan Liu (shyliu@hust.edu.cn)
Received:19 January 2025,
Revised:2025-06-10,
Accepted:17 July 2025,
Published Online:28 August 2025,
Published:31 October 2025
Scan QR Code
Liu, L. et al. Pushing the resolution limit of coherent diffractive imaging. Light: Science & Applications, 14, 3139-3149 (2025).
Liu, L. et al. Pushing the resolution limit of coherent diffractive imaging. Light: Science & Applications, 14, 3139-3149 (2025). DOI: 10.1038/s41377-025-01963-2.
Coherent diffractive imaging (CDI)
with its lensless geometry and theoretically perfect transfer function
is considered as one of the most promising paradigms to achieve the Abbe resolution limit. However
recent advances on pushing the resolution limit in high-numerical-aperture (NA) CDIs has thus far been challenging. Here
we report a nearly 0.9NA CDI with an optimized imaging factor (
k
= 0.501)
pushing the Abbe resolution diffraction limit for the first time in ultra-high-NA scenarios. Leveraging this the ultra-high NA and the Abbe-limit
k
-factor
we demonstrate a record-high imaging resolution of 0.57
λ
for CDIs. Our approach builds upon a nove
l computational framework termed 'rigorous Fraunhofer diffraction' that eliminates the Ewald sphere effect in CDIs
particularly for high NAs. Our framework transforms the general challenge of high-NA
resolution-limited CDIs from relying on approximate and complicated geometric corrections to a solvable problem through rigorous model-based computation.
Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349 , aab3500 (2015)..
Zhu, D. J. et al. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nat. Commun. 9 , 1552 (2018)..
Lupini, A. R., Oxley, M. P. & Kalinin, S. V. Pushingthe limits of electron ptychography. Science 362 , 399–400 (2018)..
Ito, T. & Okazaki, S. Pushing the limits of lithography. Nature 406 , 1027–1031 (2000)..
Szameit, A. et al. Sparsity-based single-shot subwavelength coherent diffractive imaging. Nat. Mater. 11 , 455–459 (2012)..
Dravins, D., Lagadec, T. & Nuñez, P. Optical aperture synthesis with electronically connected telescopes. Nat. Commun. 6 , 6852 (2015)..
Chen, Z. et al. Electron ptychography achieves atomic-resolution limits set by lattice vibrations. Science 372 , 826–831 (2021)..
Darafsheh, A. & Abbasian, V. Dielectric microspheres enhance microscopy resolution mainly due to increasing the effective numerical aperture. Light Sci. Appl. 12 , 22 (2023)..
Liang, M. S. & Yang, C. Implementation of free-space Fourier Ptychography with near maximum system numerical aperture. Opt. Express 30 , 20321–20332 (2022)..
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352 , 1190–1194 (2016)..
Totzeck, M., Wilhelm, U., Aksel, G. & Winfried, K. Pushing deep ultraviolet lithography to its limits. Nat. Photonics 1 , 629–631 (2007)..
Mi, W. J., Nillius, P., Pearce, M. & Danielsson, M. A stacked prism lens concept for next-generation hard X-ray telescopes. Nat. Astron. 3 , 867–872 (2019)..
Miao, J. W., Ishikawa, T., Robinson, I. K. & Murnane, M. M. Beyond crystallography: diffractive imaging using coherent x-raylight sources. Science 348 , 530–535 (2015)..
Cameron, P. et al. Adaptive optical imaging with entangled photons. Science 383 , 1142–1148 (2024)..
Bates, M., Huang, B., Dempsey, G. T. & Zhuang, X. W. Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317 , 1749–1753 (2007)..
Aidukas, T. et al. High-performance 4-nm-resolution X-ray tomography using burst ptychography. Nature 632 , 81–88 (2024)..
Shao, Y. et al. Wavelength-multiplexed multi-mode EUV reflection ptychography based on automatic differentiation. Light Sci. Appl. 13 , 196 (2024)..
Sheng, P. & Zhang, F. Serial coherent diffraction imaging of dynamic samples based on inter-frame continuity. Light Sci. Appl. 14 , 230 (2025)..
Nguyen, K. X. et al. Achieving sub-0.5-angstrom–resolution ptychography in an uncorrected electron microscope. Science 383 , 865–870 (2024)..
Cao, R. Z., Shen, C. & Yang, C. High-resolution, large field-of-view label-free imaging via aberration-corrected, closed-form complex field reconstruction. Nat. Commun. 15 , 4713 (2024)..
Zhang, S. H. et al. FPM-WSI: Fourier ptychographic whole slide imaging via feature-domain backdiffraction. Optica 11 , 634–646 (2024)..
Song, P. M. et al. Ptycho-endoscopy on a lensless ultrathin fiber bundle tip. Light Sci. Appl. 13 , 168 (2024)..
Zheng, G. A., Horstmeyer, R. & Yang, C. Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7 , 739–745 (2013)..
Chang, X., Bian, L. & Zhang, J. Large-scale phase retrieval. eLight 1 , 4 (2021)..
Thibault, P. & Menzel, A. Reconstructing state mixtures from diffraction measurements. Nature 494 , 68–71 (2013)..
Huijts, J. et al. Broadband coherent diffractive imaging. Nat. Photonics 14 , 618–622 (2020)..
Chen, C., Gu, H. & Liu, S. Ultra-broadband diffractive imaging with unknown probe spectrum. Light Sci. Appl. 13 , 213 (2024)..
de Beurs, A. et al. aPIE: an angle calibration algorithm for reflection ptychography. Opt. Lett. 47 , 1949–1952 (2022)..
Liu, L. et al. An efficient and robust self-calibration algorithm for translation position errors in ptychography. IEEE Trans. Instrum. Meas. 73 , 4503712 (2024)..
Liu, L. et al. Resolution-enhanced lensless ptychographic microscope based on maximum-likelihood high-dynamic-range image fusion. IEEE Trans. Instrum. Meas. 73 , 4502711 (2024)..
Liu, L. et al. Wavelet-domain autofocusing algorithm for lensless ptychographic imaging. Measurement 253 , 117634 (2025)..
Chen, N. et al. Uncertainty-aware Fourier ptychography. Light Sci. Appl. 14 , 236 (2025)..
Gao, Y. H. & Cao, L. C. Motion-r esolved, reference-free holographic imaging via spatiotemporally regularized inversion. Optica 11 , 32–41 (2024)..
Gao, Y. H. & Cao, L. C. Iterative projection meets sparsity regularization: towards practical single-shot quantitative phase imaging with in-line holography. Light Adv. Manuf. 4 , 6 (2023)..
Sun, J. W. et al. Quantitative phase imaging through anultra-thin lensless fiber endoscope. Light Sci. Appl. 11 , 204 (2022)..
Fan, Y. et al. Efficient synthetic aperture for phaseless Fourier ptychographic microscopy with hybrid coherent and incoherent illumination. Laser Photonics Rev. 17 , 2200201 (2023)..
Shu, Y. F. et al. Adaptive optical quantitative phase imaging based on annular illumination Fourier ptychographic microscopy. PhotoniX 3 , 24 (2022)..
Lu, L. P., Li, J. J., Shu, Y. F., Sun, J. S. & Zuo, C. Hybrid brightfield and darkfield transport of intensity approach for high-throughput quantitative phase microscopy. Adv. Photonics 4 , 056002 (2022)..
Jiang, S. W. et al. Spatial- and Fourier-domain pt ychography for high-throughput bio-imaging. Nat. Protoc. 18 , 2051–2083 (2023)..
Singh, A. K., Naik, D. N., Pedrini, G., Takeda, M. & Osten, W. Exploiting scattering media for exploring 3D objects. Light Sci. Appl. 6 , e16219 (2017)..
Badt, N. & Katz, O. Real-time holographic lensless micro-endoscopy through flexible fibers via fiber bundle distal holography. Nat. Commun. 13 , 6055 (2022)..
Chapman, H. et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser. Nat. Phys. 2 , 839–843 (2006)..
Gardner, D. et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source. Nat. Photonics 11 , 259–263 (2017)..
Eschen, W. et al. Material-specific high-resolution table-top extreme ultraviolet microscopy. Light Sci. Appl. 11 , 117 (2022)..
Seaberg, M. D. et al. Ultrahigh 22 nm resolution coherent diffractive imaging using a desktop 13 nm high harmonic source. Opt. Express 19 , 22470–22479 (2011)..
Raines, K. S. et al. Three-dimensional structure determination from a single view. Nature 463 , 214–217 (2010)..
Kfir, O. et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation. Sci. Adv. 3 , eaao4641 (2017)..
Sandberg, R. L. et al. High numerical aperture tabletop soft x-ray diffraction microscopy with 70-nm resolution. Proc. Natl. Acad. Sci. USA 105 , 24–27 (2008)..
Zurch, M. W. High-Resolution Extreme Ultraviolet Microscopy: Imaging of Artificial and Biological Specimens with Laser-Driven Ultrafast XUV Sources (Springer, 2015).
Gardner, D. F. et al. High numerical aperture reflection mode coherent diffraction microscopy using off-axis apertured illumination. Opt. Express 20 , 19050–19059 (2012)..
Liu, L., Li, W. J., Zhong, L., Gu, H. H. & Liu, S. Y. An adaptive noise-blind separation algorithm for ptychography. Opt. Lasers Eng. 169 , 107748 (2023)..
Heintzmann, R., Loetg ering, L. & Wechsler, F. Scalable angular spectrum propagation. Optica 10 , 1407–1416 (2023)..
Wittwer, F. et al. Phase retrieval framework for direct reconstruction of the projected refractive index applied to ptychography and holography. Optica 9 , 295–302 (2022)..
Zhao, W. et al. Quantitatively mapping local quality of super-resolution microscopy by rolling Fourier ring correlation. Light Sci. Appl. 12 , 298 (2023)..
Hu, J. et al. Subwavelength imaging using a solid-immersion diffractive optical processor. eLight 4 , 8 (2024)..
Rahman, M. S. S. & Ozcan, A. Universal point spread function engineering for 3D optical information processing. Light Sci. Appl. 14 , 212 (2025)..
Williams, G. J. et al. Fresnel coherent diffractive imaging. Phys. Rev. Lett. 97 , 025506 (2006)..
Zhao, Z. et al. Intensity adaptive optics. Light Sci. Appl. 14 , 128 (2025)..
0
Views
0
Downloads
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution
京公网安备11010802024621