1.Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, 510632 Guangzhou, China
2.Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System, Harbin Institute of Technology, 518055 Shenzhen, China
3.Institute of Modern Optics, Nankai University, 300350 Tianjin, China
Zi-Lan Deng (zilandeng@jnu.edu.cn)
Shumin Xiao (shumin.xiao@hit.edu.cn)
Xiangping Li (xiangpingli@jnu.edu.cn)
纸质出版日期:2021,
网络出版日期:2021-01-27,
收稿日期:2020-07-19,
修回日期:2021-01-01,
录用日期:2021-01-07
Scan QR Code
Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers[J]. LSA, 2021,10(2):208-216.
Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Science & Applications, 10, 208-216 (2021).
Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers[J]. LSA, 2021,10(2):208-216. DOI: 10.1038/s41377-021-00468-y.
Wang, S. et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light: Science & Applications, 10, 208-216 (2021). DOI: 10.1038/s41377-021-00468-y.
The control of polarization
an essential property of light
is of broad scientific and technological interest. Polarizers are indispensable optical elements for direct polarization generation. However
arbitrary polarization generation
except that of common linear and circular polarization
relies heavily on bulky optical components such as cascading linear polarizers and waveplates. Here
we present an effective strategy for designing all-in-one full Poincaré sphere polarizers based on perfect arbitrary polarization conversion dichroism and implement it in a monolayer all-dielectric metasurface. This strategy allows preferential transmission and conversion of one polarization state located at an arbitrary position on the Poincaré sphere to its handedness-flipped state while completely blocking its orthogonal state. In contrast to previous methods that were limited to only linear or circular polarization
our method manifests perfect dichroism of nearly 100% in theory and greater than 90% experimentally for arbitrary polarization states. By leveraging this attractive dichroism
our demonstration of the generation of polarization beams located at an arbitrary position on a Poincaré sphere directly from unpolarized light can substantially extend the scope of meta-optics and dramatically promote state-of-the-art nanophotonic devices.
Rubin, N. A. et al. Matrix Fourier optics enables a compact full-Stokes polarization camera.Science365, 43 (2019)..
Hu, H., Gan, Q.&Zhan, Q. Generation of a nondiffracting superchiral optical needle for circular dichroism imaging of sparse subdiffraction objects.Phys. Rev. Lett.122, 223901 (2019)..
Li, G. et al. Continuous control of the nonlinearity phase for harmonic generations.Nat. Mater.14, 607–612 (2015)..
Segal, N., Keren-Zur, S., Hendler, N.&Ellenbogen, T. Controlling light with metamaterial-based nonlinear photonic crystals.Nat. Photonics9, 180–184 (2015)..
Zijlstra, P., Chon, J. W.&Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods.Nature459, 410–413 (2009)..
Li, X., Lan, T. -H., Tien, C. -H.&Gu, M. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam.Nat. Commun.3, 1–6 (2012)..
Chen, Z. -Y. et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission.Light Sci. Appl.6, e16207–e16207 (2017)..
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat. Photonics6, 488 (2012)..
Zhang, F. et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit Interactions.Adv. Funct. Mater.27, 1704295 (2017)..
Born, M.&Wolf, E.Principles of optics: electromagnetic theory of propagation, interference and diffraction of light7th edn. (Cambridge University Press, Cambridge, 1999).
Noda, S., Yokoyama, M., Imada, M., Chutinan, A.&Mochizuki, M. Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design.Science293, 1123–1125 (2001)..
Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer.Science325, 1513–1515 (2009)..
Zhao, Y., Belkin, M. A.&Alù, A. Twisted optical metamaterials for planarized ultrathin broadband circular polarizers.Nat. Commun.3, 870 (2012)..
Turner, M. D. et al. Miniature chiral beamsplitter based on gyroid photonic crystals.Nat. Photonics7, 801–805 (2013)..
Pfeiffer, C., Zhang, C., Ray, V., Guo, L. J.&Grbic, A. High performance bianisotropic metasurfaces: asymmetric transmission of light.Phys. Rev. Lett.113, 023902 (2014)..
Fedotov, V. A. et al. Asymmetric propagation of electromagnetic waves through a planar chiral structure.Phys. Rev. Lett.97, 167401 (2006)..
Plum, E., Fedotov, V. A.&Zheludev, N. I. Planar metamaterial with transmission and reflection that depend on the direction of incidence.Appl. Phys. Lett.94, 131901 (2009)..
Zhu, A. Y. et al. Giant intrinsic chiro-optical activity in planar dielectric nanostructures.Light Sci. Appl.7, 17158–17158 (2018)..
Ye, W. et al. Large chiroptical effects in planar chiral metamaterials.Phys. Rev. Appl.7, 054003 (2017)..
Ma, Z. et al. All-dielectric planar chiral metasurface with gradient geometric phase.Opt. Express26, 6067–6078 (2018)..
Kenney, M. et al. Pancharatnam–berry phase induced spin-selective transmission in herringbone dielectric metamaterials.Adv. Mater.28, 9567–9572 (2016)..
Zheng, G. et al. Metasurface holograms reaching 80% efficiency.Nat. Nanotechnol.10, 308–312 (2015)..
Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333–337 (2011)..
Huang, L. et al. Dispersionless phase discontinuities for controlling light propagation.Nano Lett.12, 5750–5755 (2012)..
Deng, Z. -L. et al. Facile metagrating holograms with broadband and extreme angle tolerance.Light Sci. Appl.7, 1–8 (2018)..
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase.Light Sci. Appl.8, 92 (2019)..
Lee, G. -Y. et al. Complete amplitude and phase control of light using broadband holographic metasurfaces.Nanoscale10, 4237–4245 (2018)..
Arbabi, A., Horie, Y., Bagheri, M.&Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat. Nanotechnol.10, 937–943 (2015)..
Deng, Z. -L. et al. Diatomic metasurface for vectorial holography.Nano Lett.18, 2885–2892 (2018)..
Yu, N. et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces.Nano Lett.12, 6328–6333 (2012)..
Sun, W., He, Q., Hao, J.&Zhou, L. A transparent metamaterial to manipulate electromagnetic wave polarizations.Opt. Lett.36, 927–929 (2011)..
Huang, K. et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms.Laser Photonics Rev.11, 1700025 (2017)..
Huang, K. et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light.Nat. Commun.6, 7059 (2015)..
Deng, Z. -L. et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces.Adv. Funct. Mater.30, 1910610 (2020)..
Wang, S. et al. Diatomic metasurface based broadband J-plate for arbitrary spin-to-orbital conversion.J. Phys. D. Appl. Phys.52, 324002 (2019)..
Ma, X., Pu, M., Li, X., Guo, Y.&Luo, X. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation.Opto Electron Adv.2, 180023 (2019)..
Khorasaninejad, M.&Capasso, F. Metalenses: versatile multifunctional photonic components.Science358, eaam8100 (2017)..
Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging.Nat. Nanotechnol.14, 227–231 (2019)..
Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible.Nat. Nanotechnol.13, 220–226 (2018)..
Deng, Z. -L.&Li, G. Metasurface optical holography.Mater. Today Phys.3, 16–32 (2017)..
Mueller, J. B., Rubin, N. A., Devlin, R. C., Groever, B.&Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization.Phys. Rev. Lett.118, 113901 (2017)..
Shi, Z. et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion.Sci. Adv.6, eaba3367 (2020)..
Song, Q. et al. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces.Nat. Commun.11, 2651 (2020)..
Overvig, A. C., Shrestha, S.&Yu, N. Dimerized high contrast gratings.Nanophotonics7, 1157 (2018)..
Bao, Y. et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control.Light Sci. Appl.8, 95 (2019)..
Milione, G., Sztul, H. I., Nolan, D. A.&Alfano, R. R. Higher-order Poincaré sphere, stokes parameters, and the angular momentum of light.Phys. Rev. Lett.107, 053601 (2011)..
Menzel, C., Rockstuhl, C.&Lederer, F. Advanced Jones calculus for the classification of periodic metamaterials.Phys. Rev. A82, 053811 (2010)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构