1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240 Shanghai, China
2.Department of Physics, Jiangxi Normal University, 330022 Nanchang, China
3.Shanghai Research Center for Quantum Sciences, 201315 Shanghai, China
4.Collaborative Innovation Center of Light Manipulation and Applications, Shandong Normal University, 250358 Jinan, China
Yuanhua Li (lyhua1984@jxnu.edu.cn)
Xianfeng Chen (xfchen@sjtu.edu.cn)
纸质出版日期:2021-12-31,
网络出版日期:2021-09-14,
收稿日期:2021-07-13,
修回日期:2021-08-31,
录用日期:2021-09-04
Scan QR Code
A 15-user quantum secure direct communication network[J]. LSA, 2021,10(12):2322-2329.
Qi, Z. T. et al. A 15-user quantum secure direct communication network. Light: Science & Applications, 10, 2322-2329 (2021).
A 15-user quantum secure direct communication network[J]. LSA, 2021,10(12):2322-2329. DOI: 10.1038/s41377-021-00634-2.
Qi, Z. T. et al. A 15-user quantum secure direct communication network. Light: Science & Applications, 10, 2322-2329 (2021). DOI: 10.1038/s41377-021-00634-2.
Quantum secure direct communication (QSDC) based on entanglement can directly transmit confidential information. However
the inability to simultaneously distinguish the four sets of encoded entangled states limits its practical application. Here
we explore a QSDC network based on time–energy entanglement and sum-frequency generation. In total
15 users are in a fully connected QSDC network
and the fidelity of the entangled state shared by any two users is > 97%. The results show that when any two users are performing QSDC over 40 km of optical fiber
the fidelity of the entangled state shared by them is still > 95%
and the rate of information transmission can be maintained above 1 Kbp/s. Our result demonstrates the feasibility of a proposed QSDC network and hence lays the foundation for the realization of satellite-based long-distance and global QSDC in the future.
Gisin, N.&Thew, R. Quantum communication.Nat. Photonics1, 165–171 (2007)..
Park, B. K. et al. User-independent optical path length compensation scheme with sub-nanosecond timing resolution for a 1 ×Nquantum key distribution network system.Photonics Res.8, 296–302 (2020)..
Luo, Y. H. et al. Quantum teleportation in high dimensions.Phys. Rev. Lett.123, 070505 (2019)..
Long, G. L.&Liu, X. S. Theoretically efficient high-capacity quantum-key-distribution scheme.Phys. Rev. A65, 032302 (2002)..
Joshi, S. K. et al. A trusted node–free eight-user metropolitan quantum communication network.Sci. Adv.6, eaba0959 (2020)..
Wengerowsky, S. et al. An entanglement-based wavelength-multiplexed quantum communication network.Nature564, 225–228 (2018)..
Chen, Y. A. et al. An integrated space-to-ground quantum communication network over 4, 600 kilometres.Nature589, 214–219 (2021)..
Deng, F. G., Long, G. L.&Liu, X. S. Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block.Phys. Rev. A68, 042317 (2003)..
Wang, C. Quantum secure direct communication: intersection of communication and cryptography.Fundamental Res.1, 91–92 (2021)..
Kania, Elsa B.&Costello, J. K. "Quantum hegemony?"Center for New American Security12, (2018)..
Deng, F. G.&Long, G. L. Secure direct communication with a quantum one-time pad.Phys. Rev. A69, 052319 (2004)..
Zhu, F. et al. Experimental long-distance quantum secure direct communication.Sci. Bull.62, 1519–1524 (2017)..
Zhang, W. et al. Quantum secure direct communication with quantum memory.Phys. Rev. Lett.118, 220501 (2017)..
Hu, J. Y. et al. Experimental quantum secure direct communication with single photons.Light. : Sci. Appl.5, e16144 (2016)..
Qi, R. Y. et al. Implementation and security analysis of practical quantum secure direct communication.Light. : Sci. Appl.8, 22 (2019)..
Ye, Z. D. et al. Generic security analysis framework for quantum secure direct communication.Front. Phys.16, 21503 (2021)..
Wang, X. F. et al. Transmission of photonic polarization states from geosynchronous Earth orbit satellite to the ground.Quantum Eng.3, e73 (2021)..
Pelc, J. S. et al. Upconversion of optical signals with multi-longitudinal-mode pump lasers.Phys. Rev. A86, 033827 (2012)..
Shentu, G. L. et al. Ultralow noise up-conversion detector and spectrometer for the telecom band.Opt. Express21, 13986–13991 (2013)..
Li, Y. H. et al. Multiuser time-energy entanglement swapping based on dense wavelength division multiplexed and sum-frequency generation.Phys. Rev. Lett.123, 250505 (2019)..
Gayer, O. et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3.Appl. Phys. B91, 343–348 (2008)..
Jiang, H. W. et al. Optical half-adder and half-subtracter employing the Pockels effect.Opt. Express23, 9784–9789 (2015)..
Li, T.&Long, G. L. Quantum secure direct communication based on single-photon Bell-state measurement.N. J. Phys.22, 063017 (2020)..
Wyner, A. D. The wire-tap channel.Bell Syst. Tech. J.54, 1355–1387 (1975)..
Wu, J. W. et al. Security of quantum secure direct communication based on Wyner's wiretap channel theory.Quantum Eng.1, e26 (2019)..
Chen, S. S. et al. Three-step three-party quantum secure direct communication.Sci. China Phys. Mech. Astron.61, 90312 (2018)..
Long, G. L.&Zhang, H. R. Drastic increase of channel capacity in quantum secure direct communication using masking.Sci. Bull.66, 1267–1269 (2021)..
Zhou, Z. R. et al. Measurement-device-independent quantum secure direct communication.Sci. China Phys. Mech. Astron.63, 230362 (2020)..
Gao, Z. K., Li, T.&Li, Z. H. Long-distance measurement-device-independent quantum secure direct communication.EPL (Europhys. Lett. )125, 40004 (2019)..
Zhou, L., Sheng, Y. B.&Long, G. L. Device-independent quantum secure direct communication against collective attacks.Sci. Bull.65, 12–20 (2020)..
You, X. H. et al. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts.Sci. China Inf. Sci.64, 110301 (2021)..
Long, G. L. InQuantum Secure Direct Communication: Current Status and Perspective Application in Network, WS-08.https://globecom2020.ieee-globecom.org/workshop/ws-08-workshop-quantum-communications-and-information-technology-qcit/programhttps://globecom2020.ieee-globecom.org/workshop/ws-08-workshop-quantum-communications-and-information-technology-qcit/program(IEEE GLOBECOM, 2020)..
Pirandola, S. End-to-end capacities of a quantum communication network.Commun. Phys.2, 51 (2019)..
Xiang, T. et al. Single-photon frequency conversion via cascaded quadratic nonlinear processes.Phys. Rev. A97, 063810 (2018)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构