1.Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
2.Department of Physics and William Mong Institute of Nano Science and Technology, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
Kei May Lau (eekmlau@ust.hk)
纸质出版日期:2021-11-30,
网络出版日期:2021-09-26,
收稿日期:2021-04-14,
修回日期:2021-09-02,
录用日期:2021-09-06
Scan QR Code
A monolithic InP/SOI platform for integrated photonics[J]. LSA, 2021,10(11):2143-2152.
Zhao, Y. et al. A monolithic InP/SOI platform for integrated photonics. Light: Science & Applications, 10, 2143-2152 (2021).
A monolithic InP/SOI platform for integrated photonics[J]. LSA, 2021,10(11):2143-2152. DOI: 10.1038/s41377-021-00636-0.
Zhao, Y. et al. A monolithic InP/SOI platform for integrated photonics. Light: Science & Applications, 10, 2143-2152 (2021). DOI: 10.1038/s41377-021-00636-0.
The deployment of photonic integrated circuits (PICs) necessitates an integration platform that is scalable
high-throughput
cost-effective
and power-efficient. Here we present a monolithic InP on SOI platform to synergize the advantages of two mainstream photonic integration platforms: Si photonics and InP photonics. This monolithic InP/SOI platform is realized through the selective growth of both InP sub-micron wires and large dimension InP membranes on industry-standard (001)-oriented silicon-on-insulator (SOI) wafers. The epitaxial InP is in-plane
dislocation-free
site-controlled
intimately positioned with the Si device layer
and placed right on top of the buried oxide layer to form "InP-on-insulator". These attributes allow for the realization of various photonic functionalities using the epitaxial InP
with efficient light interfacing between the Ⅲ-Ⅴ devices and the Si-based waveguides. We exemplify the potential of this InP/SOI platform for integrated photonics through the demonstration of lasers with different cavity designs including subwavelength wires
square cavities
and micro-disks. Our results here mark a critical step forward towards fully-integrated Si-based PICs.
Asghari, M.&Krishnamoorthy, A. V. Silicon photonics: energy-efficient communication.Nat. Photon.5, 268–270 (2011)..
Thomson, D. et al. Roadmap on silicon photonics.J. Opt.18, 073003 (2016)..
Jones, R. et al. Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers.IEEE Nanotechnol. Mag.13, 17–26 (2019)..
Liang, D. et al. Fully-integrated heterogeneous DML transmitters for high-performancecomputing.J. Lightwave Technol.38, 3322–3337 (2020)..
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits.Nat. Photon.14, 285–298 (2020)..
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.Nature556, 349–354 (2018)..
Sun, C. et al. Single-chip microprocessor that communicates directly using light.Nature528, 534–538 (2015)..
Bowers, J. E.&Liu, A. Y. A comparison of four approaches to photonic integration.Optical Fiber Communications Conference and Exhibition. p. 1–3 (IEEE, 2017).
Liu, A. Y.&Bowers, J. E. Photonic integration with epitaxial Ⅲ-Ⅴ on silicon.IEEE J. Sel. Top. Quant. Electron.24, 6000412 (2018)..
Norman, J. C. et al. Perspective: the future of quantum dot photonic integrated circuits.APL Photon.3, 030901 (2018)..
Smit, M., Williams, K.&van der Tol, J. Past, present, and future of InP-based photonic integration.APL Photon.4, 050901 (2019)..
Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits.J. Lightwave Technol.34, 20–35 (2016)..
Ramirez, J. M. et al. Ⅲ-Ⅴ-on-silicon integration: from hybrid devices to heterogeneous photonic integrated circuits.IEEE J. Sel. Top. Quant. Electron.26, 6100213 (2020)..
Liang, D.&Bowers, J. E. Recent progress in lasers on silicon.Nat. Photon.4, 511–517 (2010)..
Wang, Z. C. et al. Novel light source integration approaches for silicon photonics.Laser Photon. Rev.11, 1700063 (2017)..
Li, Q.&Lau, K. M. Epitaxial growth of highly mismatched Ⅲ-Ⅴ materials on (001) silicon for electronics and optoelectronics.Prog. Cryst. Growth Charact. Mater.63, 105–120 (2017)..
Chen, S. M. et al. Electrically pumped continuous-wave Ⅲ-Ⅴ quantum dot lasers on silicon.Nat. Photon.10, 307–311 (2016)..
Jung, D. et al. Impact of threading dislocation density on the lifetime of InAs quantum dot lasers on Si.Appl. Phys. Lett.112, 153507 (2018)..
Xue, Y. et al. 1.55 µm electrically pumped continuous wave lasing of quantum dash lasers grown on silicon.Opt. Express28, 18172–18179 (2020)..
Wang, Z. C. et al. Room-temperature InP distributed feedback laser array directly grown on silicon.Nat. Photon.9, 837–842 (2015)..
Han, Y. et al. Selectively grown Ⅲ-Ⅴ lasers for integrated Si-photonics.J. Lightwave Technol.39, 940–948 (2021)..
Shi, Y. T. et al. Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer.Optica4, 1468–1473 (2017)..
Han, Y. et al. Bufferless 1.5 µm Ⅲ-Ⅴ lasers grown on Si-photonics 220 nm silicon-on-insulator platforms.Optica7, 148–153 (2020)..
Yan, Z., Han, Y.&Lau, K. M. Multi-heterojunction InAs/GaSb nano-ridges directly grown on (001) Si.Nanotechnology31, 345707 (2020)..
Schmid, H. et al. Template-assisted selective epitaxy of Ⅲ-Ⅴ nanoscale devices for co-planar heterogeneous integration with Si.Appl. Phys. Lett.106, 233101 (2015)..
Wirths, S. et al. Room-temperature lasing from monolithically integrated GaAs microdisks on silicon.ACS Nano12, 2169–2175 (2018)..
Mauthe, S. et al. High-speed Ⅲ-Ⅴ nanowire photodetector monolithically integrated on Si.Nat. Commun.11, 4565 (2020)..
Han, Y.&Lau, K. M. Ⅲ-Ⅴ lasers selectively grown on (001) silicon.J. Appl. Phys.128, 200901 (2020)..
Metaferia, W. et al. Growth of InP directly on Si by corrugated epitaxial lateral overgrowth.J. Phys. D Appl. Phys.48, 045102 (2015)..
Parillaud, O. et al. High quality InP on Si by conformal growth.Appl. Phys. Lett.68, 2654–2656 (1996)..
Han, Y., Xue, Y.&Lau, K. M. Selective lateral epitaxy of dislocation-free InP on silicon-on-insulator.Appl. Phys. Lett.114, 192105 (2019)..
Han, Y. et al. Micrometer-scale InP selectively grown on SOI for fully integrated Si-photonics.Appl. Phys. Lett.117, 052102 (2020)..
Kunert, B. et al. How to control defect formation in monolithic Ⅲ-Ⅴ hetero-epitaxy on (100) Si? A critical review on current approaches.Semicond. Sci. Technol.33, 093002 (2018)..
Paladugu, M. et al. Site selective integration of Ⅲ-Ⅴ materials on Si for nanoscale logic and photonic devices.Cryst. Growth Des.12, 4696–4702 (2012)..
Jiang, S. et al. Evolution of (001) and (111) facets for selective epitaxial growth inside submicron trenches.J. Appl. Phys.115, 023517 (2014)..
Eaton, S. W. et al. Semiconductor nanowire lasers.Nat. Rev. Mater.1, 16028 (2016)..
Fujii, T. et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si.Optica7, 838–846 (2020)..
Xue, Y. et al. Bufferless Ⅲ-Ⅴ photodetectors directly grown on (001) silicon-on-insulators.Opt. Lett.45, 1754–1757 (2020)..
Hu, Y. T. et al. Ⅲ-Ⅴ-on-Si MQW lasers by using a novel photonic integration method of regrowth on a bonding template.Light. Sci. Appl.8, 93 (2019)..
Jiao, Y. Q. et al. InP membrane integrated photonics research.Semicond. Sci. Technol.36, 013001 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构