1.State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China
2.Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
3.John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
Yang Li (yli9003@mail.tsinghua.edu.cn)
纸质出版日期:2021-11-30,
网络出版日期:2021-09-30,
收稿日期:2021-04-08,
修回日期:2021-08-17,
录用日期:2021-09-09
Scan QR Code
Dirac-like cone-based electromagnetic zero-index metamaterials[J]. LSA, 2021,10(11):2048-2066.
Li, Y., Chan, C. T. & Mazur E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light: Science & Applications, 10, 2048-2066 (2021).
Dirac-like cone-based electromagnetic zero-index metamaterials[J]. LSA, 2021,10(11):2048-2066. DOI: 10.1038/s41377-021-00642-2.
Li, Y., Chan, C. T. & Mazur E. Dirac-like cone-based electromagnetic zero-index metamaterials. Light: Science & Applications, 10, 2048-2066 (2021). DOI: 10.1038/s41377-021-00642-2.
Metamaterials with a Dirac-like cone dispersion at the center of the Brillouin zone behave like an isotropic and impedance-matched zero refractive index material at the Dirac-point frequency. Such metamaterials can be realized in the form of either bulk metamaterials with efficient coupling to free-space light or on-chip metamaterials that are efficiently coupled to integrated photonic circuits. These materials enable the interactions of a spatially uniform electromagnetic mode with matter over a large area in arbitrary shapes. This unique optical property paves the way for many applications
including arbitrarily shaped high-transmission waveguides
nonlinear enhancement
and phase mismatch-free nonlinear signal generation
and collective emission of many emitters. This review summarizes the Dirac-like cone-based zero-index metamaterials' fundamental physics
design
experimental realizations
and potential applications.
Liberal, I.&Engheta, N. Near-zero refractive index photonics.Nat. Photonics11, 149–158 (2017)..
Kinsey, N. et al. Near-zero-index materials for photonics.Nat. Rev. Mater.4, 742–760 (2019)..
Silveirinha, M.&Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends usingε-near-zero materials.Phys. Rev. Lett.97, 157403 (2006)..
Silveirinha, M. G.&Engheta, N. Theory of supercoupling, squeezing wave energy, and field confinement in narrow channels and tight bends usingεnear-zero metamaterials.Phys. Rev. B76, 245109 (2007)..
Edwards, B. et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide.Phys. Rev. Lett.100, 033903 (2008)..
Liu, R. P. et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies.Phys. Rev. Lett.100, 023903 (2008)..
Suchowski, H. et al. Phase mismatch–free nonlinear propagation in optical zero-index materials.Science342, 1223–1226 (2013)..
Mello, O. L. et al. inConference on Lasers and Electro-Optics. JTu5A26 (Optical Society of America, 2017).
Dong, T. et al. Ultra-low-loss on-chip zero-index materials.Light Sci. Appl.10, 10 (2021)..
Ziolkowski, R. W. Propagation in and scattering from a matched metamaterial having a zero index of refraction.Phys. Rev. E70, 046608 (2004)..
Garcia, N., Ponizovskaya, E. V.&Xiao, J. Q. Zero permittivity materials: band gaps at the visible.Appl. Phys. Lett.80, 1120–1122 (2002)..
Schwartz, B. T.&Piestun, R. Total external reflection from metamaterials with ultralow refractive index.J. Optical Soc. Am. B20, 2448–2453 (2003)..
Enoch, S. et al. A metamaterial for directive emission.Phys. Rev. Lett.89, 213902 (2002)..
Alù, A. et al. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern.Phys. Rev. B75, 155410 (2007)..
Yun, S. et al. Low-loss impedance-matched optical metamaterials with zero-phase delay.ACS Nano6, 4475–4482 (2012)..
Zhou, Z. H. et al. General impedance matching via doped epsilon-near-zero media.Phys. Rev. Appl.13, 034005 (2020)..
Zhou, Z. H. et al. Substrate-integrated photonic doping for near-zero-index devices.Nat. Commun.10, 4132 (2019)..
Liberal, I. et al. Photonic doping of epsilon-near-zero media.Science355, 1058–1062 (2017)..
Zhou, Z. H.&Li, Y. A photonic-doping-inspired SIW antenna with length-invariant operating frequency.IEEE Trans. Antennas Propag.68, 5151–5158 (2020)..
Zhou, Z. H.&Li, Y.N-port equal/unequal-split power dividers using epsilon-near-zero metamaterials.IEEE Trans. Microw. Theory Tech.69, 1529–1537 (2021)..
Huang, X. Q. et al. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials.Nat. Mater.10, 582–586 (2011)..
Chan, C. T. et al. Dirac dispersion and zero-index in two dimensional and three dimensional photonic and phononic systems (invited paper).Prog. Electromagn. Res. B44, 163–190 (2012)..
Mei, J. et al. First-principles study of Dirac and Dirac-like cones in phononic and photonic crystals.Phys. Rev. B86, 035141 (2012)..
Sakoda, K. Universality of mode symmetries in creating photonic Dirac cones.J. Opt. Soc. Am. B29, 2770–2778 (2012)..
Sakoda, K. Proof of the universality of mode symmetries in creating photonic Dirac cones.Opt. Express20, 25181–25194 (2012)..
Luo, L. Y. et al. Non-Hermitian effective medium theory and complex Dirac-like cones.Opt. Express29, 14345–14353 (2021)..
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene.Nature438, 197–200 (2005)..
Kim, J., Yu, S.&Park, N. Universal design platform for an extended class of photonic Dirac cones.Phys. Rev. Appl.13, 044015 (2020)..
Liberal, I., Li, Y.&Engheta, N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping.Nanophotonics7, 1117–1127 (2018)..
Marcos, J. S., Silveirinha, M. G.&Engheta, N.µ-near-zero supercoupling.Phys. Rev. B91, 195112 (2015)..
Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide.ACS Photonics4, 2385–2389 (2017)..
Zhang, P. et al. Numerical investigation of the flat band Bloch modes in a 2D photonic crystal with Dirac cones.Opt. Express23, 10444–10452 (2015)..
Gao, H. et al. Is the photonic crystal with a Dirac cone at its Г point a real zero-index material?Appl. Phys. B123, 165 (2017)..
Wu, Y. et al. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit.Phys. Rev. B74, 085111 (2006)..
Vulis, D. I. et al. Manipulating the flow of light using Dirac-cone zero-index metamaterials.Rep. Progress Phys.82, 012001 (2018)..
Liu, F. M., Huang, X. Q.&Chan, C. T. Dirac cones at$$\mathop {k}\limits^ \to$$= 0 in acoustic crystals and zero refractive index acoustic materials. Appl. Phys. Lett. 100, 071911 (2012).
Dai, H. Q., Xia, B. Z.&Yu, D. J. Dirac cones in two-dimensional acoustic metamaterials.J. Appl. Phys.122, 065103 (2017)..
Dai, H. Q. et al. Double Dirac cone in two-dimensional phononic crystals beyond circular cells.J. Appl. Phys.121, 135105 (2017)..
Ji, W. Q. et al. Manipulation of acoustic transmission by zero-index metamaterial with rectangular defect.J. Appl. Phys.122, 215103 (2017)..
Koutserimpas, T. T.&Fleury, R. Zero refractive index in time-Floquet acoustic metamaterials.J. Appl. Phys.123, 091709 (2018)..
Wu, S. Q.&Mei, J. Double dirac cones and zero-refractive-index media in water waves.Europhys. Lett.123, 59001 (2018)..
Dubois, M. et al. Observation of acoustic Dirac-like cone and double zero refractive index.Nat. Commun.8, 14871 (2017)..
Zhu, H. F.&Semperlotti, F. Double-zero-index structural phononic waveguides.Phys. Rev. Appl.8, 064031 (2017)..
Hyun, J. et al. Systematic realization of double-zero-index phononic crystals with hard inclusions.Sci. Rep.8, 7288 (2018)..
Indaleeb, M. M. et al. Deaf band based engineered Dirac cone in a periodic acoustic metamaterial: a numerical and experimental study.Phys. Rev. B99, 024311 (2019)..
Indaleeb, M. M. et al. Deaf band-based prediction of Dirac cone in acoustic metamaterials.J. Appl. Phys.127, 064903 (2020)..
Xu, C. Q. et al. Three-dimensional acoustic double-zero-index medium with a fourfold degenerate dirac-like point.Phys. Rev. Lett.124, 074501 (2020)..
Li, B. et al. Dual Dirac cones in elastic Lieb-like lattice metamaterials.Appl. Phys. Lett.114, 081906 (2019)..
Liu, F. M. et al. Scattering of waves by three-dimensional obstacles in elastic metamaterials with zero index.Phys. Rev. B94, 224102 (2016)..
Chan, C. T., Hang, Z. H.&Huang, X. Q. Dirac dispersion in two-dimensional photonic crystals.Adv. Optoelectron.2012, 313984 (2012)..
Vulis, D. I. et al. Monolithic CMOS-compatible zero-index metamaterials.Opt. Express25, 12381–12399 (2017)..
Lin, Z. et al. Topology-optimized dual-polarization Dirac cones.Phys. Rev. B97, 081408 (2018)..
Minkov, M. et al. Zero-index bound states in the continuum.Phys. Rev. Lett.121, 263901 (2018)..
Shankhwar, N., Kalra, Y.&Sinha, R. K. All dielectric zero-index metamaterial for TE/TM polarization.J. Opt.20, 115101 (2018)..
Tang, H. N. et al. Low-loss zero-index materials.Nano Lett.21, 914–920 (2021)..
Moitra, P. et al. Realization of an all-dielectric zero-index optical metamaterial.Nat. Photonics7, 791–795 (2013)..
Li, Y. et al. On-chip zero-index metamaterials.Nat. Photonics9, 738–742 (2015)..
Shore, R. A.&Yaghjian, A. D. Traveling waves on two- and three-dimensional periodic arrays of lossless scatterers.Radio Sci.42, RS6S21 (2007)..
Smith, D. R. et al. Electromagnetic parameter retrieval from inhomogeneous metamaterials.Phys. Rev. E71, 036617 (2005)..
Simovski, C. R.&Tretyakov, S. A. Local constitutive parameters of metamaterials from an effective-medium perspective.Phys. Rev. B75, 195111 (2007)..
Alù, A. et al. Causality relations in the homogenization of metamaterials.Phys. Rev. B84, 054305 (2011)..
Soukoulis, C. M.&Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials.Nat. Photonics5, 523–530 (2011)..
Pendry, J. B. et al. Extremely low frequency plasmons in metallic mesostructures.Phys. Rev. Lett.76, 4773–4776 (1996)..
Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena.IEEE Trans. Microw. Theory Tech.47, 2075–2084 (1999)..
Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index.Nature455, 376–379 (2008)..
Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials.Phys. Rev. Lett.95, 137404 (2005)..
Li, T. et al. Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission.Opt. Express14, 11155–11163 (2006)..
Naik, G. V., Shalaev, V. M.&Boltasseva, A. Alternative plasmonic materials: beyond gold and silver.Adv. Mater.25, 3264–3294 (2013)..
Naik, G. V., Kim, J.&Boltasseva, A. Oxides and nitrides as alternative plasmonic materials in the optical range [Invited].Optical Mater. Express1, 1090–1099 (2011)..
Dong, J. W. et al. Conical dispersion and effective zero refractive index in photonic quasicrystals.Phys. Rev. Lett.114, 163901 (2015)..
Wu, Y. A semi-Dirac point and an electromagnetic topological transition in a dielectric photonic crystal.Opt. Express22, 1906–1917 (2014)..
Zhang, X. J.&Wu, Y. Effective medium theory for anisotropic metamaterials.Sci. Rep.5, 7892 (2015)..
He, X. T. et al. Dirac directional emission in anisotropic zero refractive index photonic crystals.Sci. Rep.5, 13085 (2015)..
Bor, E. et al. Asymmetric light transmission effect based on an evolutionary optimized semi-Dirac cone dispersion photonic structure.Phys. Rev. B98, 245112 (2018)..
Yasa, U. G. et al. Full utilization of semi-Dirac cones in photonics.Phys. Rev. B97, 195131 (2018)..
Wang, J. R. et al. Full polarization conical dispersion and zero-refractive-index in two-dimensional photonic hypercrystals.Sci. Rep.6, 22739 (2016)..
Rodríguez, J. A., Wang, B.&Cappelli, M. A. Dual-polarization Dirac cones in a simple 2D square lattice photonic crystal.Opt. Lett.45, 2486–2489 (2020)..
He, X. T. et al. Realization of zero-refractive-index lens with ultralow spherical aberration.ACS Photonics3, 2262–2267 (2016)..
Kita, S. et al. On-chip all-dielectric fabrication-tolerant zero-index metamaterials.Opt. Express25, 8326–8334 (2017)..
Hsu, C. W. et al. Bound states in the continuum.Nat. Rev. Mater.1, 16048 (2016)..
Jin, J. C. et al. Topologically enabled ultrahigh-Qguided resonances robust to out-of-plane scattering.Nature574, 501–504 (2019)..
Kodigala, A. et al. Lasing action from photonic bound states in continuum.Nature541, 196–199 (2017)..
Ovcharenko, A. I. et al. Bound states in the continuum in symmetric and asymmetric photonic crystal slabs.Phys. Rev. B101, 155303 (2020)..
Gagnon, J. R. et al. Relaxed phase-matching constraints in zero-index waveguides.arXiv Prepr. arXiv2102, 13074 (2021)..
Iogansen, L. V. Resonant tunneling of light in optical waveguides.J. Optical Soc. Am.66, 972–974 (1976)..
Camayd-Muñoz, P. Integrated zero-index metamaterials. PhD thesis, Harvard Univ., Cambridge (2016).
Luo, J. et al. Coherent perfect absorption via photonic doping of zero‐index media.Laser Photonics Rev.12, 1800001 (2018)..
Memarian, M.&Eleftheriades, G. V. Dirac leaky-wave antennas for continuous beam scanning from photonic crystals.Nat. Commun.6, 5855 (2015)..
Pendry, J. B., Schurig, D.&Smith, D. R. Controlling electromagnetic fields.Science312, 1780–1782 (2006)..
Chu, H. C. et al. A hybrid invisibility cloak based on integration of transparent metasurfaces and zero-index materials.Light Sci. Appl.7, 50 (2018)..
Dong, G. Y. et al. Precise displacement measurement in single-beam interferometry employing photonic metamaterial with effective zero-index.Opt. Express25, 31509–31515 (2017)..
Boyd, R. W.Nonlinear Optics3rd edn (Academic Press, Waltham, 2008).
Reshef, O. et al. inCLEO: 2016. JTu5A53 (Optical Society of America, 2016).
Agrawal, G. P.Nonlinear Fiber Optics4th edn (Academic Press, Boston, 2007).
Alam, M. Z., De Leon, I.&Boyd, R. W. Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region.Science352, 795–797 (2016)..
Yang, Y. M. et al. High-harmonic generation from an epsilon-near-zero material.Nat. Phys.15, 1022–1026 (2019)..
Jia, W. H. et al. Broadband terahertz wave generation from an epsilon-near-zero material.Light Sci. Appl.10, 11 (2021)..
Mattiucci, N., Bloemer, M. J.&D'Aguanno, G. Phase-matched second harmonic generation at the Dirac point of a 2-D photonic crystal.Opt. Express22, 6381–6390 (2014)..
D'Aguanno, G. et al. Field localization and enhancement near the Dirac point of a finite defectless photonic crystal.Phys. Rev. B87, 085135 (2013)..
Mattiucci, N., Bloemer, M. J.&D'Aguanno, G. All-optical bistability and switching near the Dirac point of a 2-D photonic crystal.Opt. Express21, 11862–11868 (2013)..
Chua, S. L. et al. Larger-area single-mode photonic crystal surface-emitting lasers enabled by an accidental Dirac point.Opt. Lett.39, 2072–2075 (2014)..
Liang, Y. et al. inConference on Lasers and Electro-Optics. JTu5A112 (Optical Society of America, 2017).
Xu, J. P. et al. Unidirectional single-photon generation via matched zero-index metamaterials.Phys. Rev. B94, 220103 (2016)..
Śmigaj, W. et al. Antireflection gratings for a photonic-crystal flat lens.Opt. Lett.34, 3532–3534 (2009)..
Dicke, R. H. Coherence in spontaneous radiation processes.Phys. Rev.93, 99–110 (1954)..
Gross, M.&Haroche, S. Superradiance: an essay on the theory of collective spontaneous emission.Phys. Rep.93, 301–396 (1982)..
Vlasov, Y. A.&McNab, S. J. Losses in single-mode silicon-on-insulator strip waveguides and bends.Opt. Express12, 1622–1631 (2004)..
Molesky, S. et al. Inverse design in nanophotonics.Nat. Photonics12, 659–670 (2018)..
Wang, Z. X. et al. Large area photonic crystal quantum cascade laser with 5 W surface-emitting power.Opt. Express27, 22708–22716 (2019)..
Liang, Y. et al. Room temperature surface emission on large-area photonic crystal quantum cascade lasers.Appl. Phys. Lett.114, 031102 (2019)..
Yao, P. J. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides.Phys. Rev. B80, 195106 (2009)..
Lobet, M. et al. Fundamental radiative processes in near-zero-index media of various dimensionalities.ACS Photonics7, 1965–1970 (2020)..
Fleury, R.&Alù, A. Enhanced superradiance in epsilon-near-zero plasmonic channels.Phys. Rev. B87, 201101 (2013)..
Sokhoyan, R.&Atwater, H. A. Quantum optical properties of a dipole emitter coupled to anɛ-near-zero nanoscale waveguide.Opt. Express21, 32279–32290 (2013)..
Maier, S. A.Plasmonics: Fundamentals and Applications(Springer, New York, 2007).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构