1.Key Laboratory of Electronic Composites of Guizhou Province, College of Big Data and Information Engineering, Guizhou University, Guiyang, 550025, Guizhou, China
2.Guizhou College of Electronic Science and Technology, Guiyang, 561113, Guizhou, China
Chaoyong Deng (cydeng@gzu.edu.cn)
纸质出版日期:2021-11-30,
网络出版日期:2021-09-26,
收稿日期:2021-04-09,
修回日期:2021-08-18,
录用日期:2021-09-10
Scan QR Code
Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices[J]. LSA, 2021,10(11):2153-2160.
Guo, K. X. et al. Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices. Light: Science & Applications, 10, 2153-2160 (2021).
Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices[J]. LSA, 2021,10(11):2153-2160. DOI: 10.1038/s41377-021-00644-0.
Guo, K. X. et al. Multiferroic oxide BFCNT/BFCO heterojunction black silicon photovoltaic devices. Light: Science & Applications, 10, 2153-2160 (2021). DOI: 10.1038/s41377-021-00644-0.
Multiferroics are being studied increasingly in applications of photovoltaic devices for the carrier separation driven by polarization and magnetization. In this work
textured black silicon photovoltaic devices are fabricated with Bi
6
Fe
1.6
Co
0.2
Ni
0.2
Ti
3
O
18
/Bi
2
FeCrO
6
(BFCNT/BFCO) multiferroic heterojunction as an absorber and graphene as an anode. The structural and optical analyses showed that the bandgap of Aurivillius-typed BFCNT and double perovskite BFCO are 1.62 ± 0.04 eV and 1.74 ± 0.04 eV respectively
meeting the requirements for the active layer in solar cells. Under the simulated AM 1.5 G illumination
the black silicon photovoltaic devices delivered a photoconversion efficiency (
η
) of 3.9% with o
pen-circuit voltage (
V
oc
)
short-circuit current density (
J
sc
)
and fill factor (
FF
) of 0.75 V
10.8 mA cm
−2
and 48.3%
respectively. Analyses of modulation of an applied electric and magnetic field on the photovoltaic properties revealed that both polarization and magnetization of multiferroics play an important role in tuning the built-in electric field and the transport mechanisms of charge carriers
thus providing a new idea for the design of future high-performance multiferroic oxide photovoltaic devices.
Zhou, H. P. et al. Interface engineering of highly efficient perovskite solar cells.Science345, 542–546 (2014)..
Shan, Q. S. et al. Perovskite light-emitting/detecting bifunctional fibres for wearable LiFi communication.Light. : Sci. Appl.9, 163 (2020)..
Xing, J. et al. Modulating the optical and electrical properties of MAPbBr3single crystals via voltage regulation engineering and application in memristors.Light. : Sci. Appl.9, 111 (2020)..
Huang, W. et al. Multiferroic Bi2FeCrO6based p-i-n heterojunction photovoltaic devices.J. Mater. Chem. A5, 10355–10364 (2017)..
Rastei, M. V. et al. Thickness dependence and strain effects in ferroelectric Bi2FeCrO6thin films.ACS Appl. Energy Mater.2, 8550–8559 (2019)..
Guo, K. X. et al. Regulationof photovoltaic response in ZSO-based multiferroic BFCO/BFCNT heterojunction photoelectrodes via magnetization and polarization.ACS Applied Materials&.Interfaces13, 35657–35663 (2021)..
Burger, A. M. et al. Shift photovoltaic current and magnetically induced bulk photocurrent in piezoelectric sillenite crystals.Phys. Rev. B102, 081113(R) (2020)..
Quattropani, A. et al. Tuning photovoltaic response in Bi2FeCrO6films by ferroelectric poling.Nanoscale10, 13761–13766 (2018)..
Tiwari, D. et al. Solution processed bismuth ferrite thin films for all-oxide solar photovoltaics.J. Phys. Chem. C.119, 5872–5877 (2015)..
Lopez-Varo, P. et al. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion.Phys. Rep.653, 1–40 (2016)..
Zhang, L. et al. Continuously tuning epitaxial strains by thermal mismatch.ACS Nano12, 1306–1312 (2018)..
Yang, S. et al. Improved ferroelectric properties and band-gap tuning in BiFeO3filmsviasubstitution of Mn.RSC Adv.9, 29238–29245 (2019)..
Guo, K. X. et al. Mutual regulation of polarization and magnetization in BFCNT/BFCO heterostructure via stress analysis of dipoles.Ceram. Int.47, 20422–20427 (2021)..
Nechache, R. et al. Bandgap tuning of multiferroic oxide solar cells.Nat. Photonics9, 61–67 (2015)..
Plata, J. J. et al. Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculations.J. Mater. Chem. A7, 27323–27333 (2019)..
Gajdoš, M. et al. Linear optical properties in the projector-augmented wave methodology.Phys. Rev. B73, 045112 (2006)..
Heyd, J., Scuseria, G. E.&Ernzerhof, M. Hybrid functionals based on a screened coulomb potential.J. Chem. Phys.118, 8207–8215 (2003)..
Medeiros, P. V. C., Stafström, S.&Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding.Phys. Rev. B89, 041407(R) (2014)..
Habgood, M., Grau-Crespo, R.&Price, S. L. Substitutional and orientational disorder in organic crystals: A symmetry-adapted ensemble model.Phys. Chem. Chem. Phys.13, 9590–9600 (2011)..
You, L. et al. Enhancing ferroelectric photovoltaic effect by polar order engineering.Sci. Adv.4, eaat3438 (2018)..
Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with>29% efficiency by enhanced hole extraction.Science370, 1300–1309 (2020)..
Lee, D. et al. Polarity control of carrier injection at ferroelectric/metal interfaces for electrically switchable diode and photovoltaic effects.Phys. Rev. B84, 125305 (2011)..
Ji, W., Yao, K.&Liang, Y. C. Bulk photovoltaic effect at visible wavelength in epitaxial ferroelectric BiFeO3thin films.Adv. Mater.22, 1763–1766 (2010)..
Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices.Nat. Nanotechnol.5, 143–147 (2010)..
Lamichhane, S. et al. Effect of laser fluence on multiferroic BiFeO3ferroelectric photovoltaic cells.J. Phys. Chem. Solids146, 109602 (2020)..
Xu, X. L. et al. Molecular ferroelectrics-driven high-performance perovskite solar cells.Angew. Chem. Int. Ed.59, 19974–19982 (2020)..
Zhang, Y. et al. Switchable magnetic bulk photovoltaic effect in the two-dimensional magnet CrI3.Nat. Commun.10, 3783 (2019)..
Park, N. G. Organometal perovskite light absorbers toward a 20% efficiency low-cost solid-state mesoscopic solar cell.J. Phys. Chem. Lett.4, 2423–2429 (2013)..
Vats, G. et al. Current modulation by optoelectric control of ferroelectric domains.ACS Appl. Electron. Mater.2, 2829–2836 (2020)..
Guo, K. X. et al. Multiferroic and in-plane magnetoelectric coupling properties of BiFeO3Nano-films with substitution of rare earth ions La3+and Nd3+.J. Rare Earths34, 1228–1234 (2016)..
Gao, L. K.&Tang, Y. L. Theoretical study on the carrier mobility and optical properties of CsPbI3by DFT.ACS Omega6, 11545–11555 (2021)..
Chen, T. et al. Intrinsic multiferroics in an individual single-crystalline Bi5Fe0.9Co0.1Ti3O15nanoplate.Nanoscale9, 15291–15297 (2017)..
Yang, C. H. et al. Influence of bias magnetic field on magnetoelectric effect of magnetostrictive/elastic/piezoelectric laminated composite.Acta Phys. Sin.57, 7292–7297 (2008)..
Herrick, D. R. Symmetry of the quadratic Zeeman effect for hydrogen.Phys. Rev. A26, 323–329 (1982)..
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites.Nature580, 360–366 (2020)..
Si, H. N. et al. Emerging conductive atomic force microscopy for metal halide perovskite materials and solar cells.Adv. Energy Mater.10, 1903922 (2020)..
Toor, F. et al. Multi-scale surface texture to improve blue response of nanoporous black silicon solar cells.Appl. Phys. Lett.99, 103501 (2011)..
Kundys, D. et al. Optically rewritable memory in a graphene-ferroelectric-photovoltaic heterostructure.Phys. Rev. Appl.13, 064034 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构