1.State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, 200240, Shanghai, China
2.Shanghai Research Center for Quantum Sciences, 201315, Shanghai, China
3.Jinan Institute of Quantum Technology, 250101, Jinan, China
4.Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, 250358, Jinan, China
5.International Center for Quantum Materials and School of Physics, Peking University, 100871, Beijing, China
6.Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
Xiong-Jun Liu (xiongjunliu@pku.edu.cn)
Luqi Yuan (yuanluqi@sjtu.edu.cn)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-07,
收稿日期:2021-02-07,
修回日期:2021-09-10,
录用日期:2021-09-14
Scan QR Code
Topological holographic quench dynamics in a synthetic frequency dimension[J]. LSA, 2021,10(11):2184-2194.
Yu, D. Y. et al. Topological holographic quench dynamics in a synthetic frequency dimension. Light: Science & Applications, 10, 2184-2194 (2021).
Topological holographic quench dynamics in a synthetic frequency dimension[J]. LSA, 2021,10(11):2184-2194. DOI: 10.1038/s41377-021-00646-y.
Yu, D. Y. et al. Topological holographic quench dynamics in a synthetic frequency dimension. Light: Science & Applications, 10, 2184-2194 (2021). DOI: 10.1038/s41377-021-00646-y.
The notion of topological phases extended to dynamical systems stimulates extensive studies
of which the characterization of nonequilibrium topological invariants is a central issue and usually necessitates the information of quantum dynamics in both the time and momentum dimensions. Here
we propose the topological holographic quench dynamics in synthetic dimension
and also show it provides a highly efficient scheme to characterize photonic topological phases. A pseudospin model is constructed with ring resonators in a synthetic lattice formed by frequencies of light
and the quench dynamics is induced by initializing a trivial state
which evolves under a topological Hamiltonian. Our key prediction is that the complete topological information of the Hamiltonian is encoded in quench dynamics solely in the time dimension
and is further mapped to lower-dimensional space
manifesting
the holographic features of the dynamics. In particular
two fundamental time scales emerge in the dynamical evolution
with one mimicking the topological band on the momentum dimension and the other characterizing the
residue
time evolution of the state after the quench. For this
a universal duality between the quench dynamics and the equilibrium topological phase of the spin model is obtained in the time dimension by extracting information from the field evolution dynamics in modulated ring systems in simulations. This work also shows that the photonic synthetic frequency dimension provides an efficient and powerful way to explore the topological nonequilibrium dynamics.
Hasan, M. Z.&Kane, C. L.Colloquium: topological insulators.Rev. Mod. Phys.82, 3045–3067 (2010)..
Qi, X. L.&Zhang, S. C. Topological insulators and superconductors.Rev. Mod. Phys.83, 1057–1110 (2011)..
Yan, B. H.&Zhang, S. C. Topological materials.Rep. Prog. Phys.75, 096501 (2012)..
Chiu, C. K. et al. Classification of topological quantum matter with symmetries.Rev. Mod. Phys.88, 035005 (2016)..
Yan, B. H.&Felser, C. Topological materials: weyl semimetals.Annu. Rev. Condens. Matter Phys.8, 337–354 (2017)..
Zener, C. Non-adiabatic crossing of energy levels.Proc. R. Soc. A137, 696–702 (1932)..
Zurek, W. H. Cosmological experiments in superfluid helium?Nature317, 505–508 (1985)..
Rudner, M. S. et al. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems.Phys. Rev. X3, 031005 (2013)..
Hu, W. C. et al. Measurement of a topological edge invariant in a microwave network.Phys. Rev. X5, 011012 (2015)..
Mukherjee, S. et al. Experimental observation of anomalous topological edge modes in a slowly driven photonic lattice.Nat. Commun.8, 13918 (2017)..
Maczewsky, L. J. et al. Observation of photonic anomalous Floquet topological insulators.Nat. Commun.8, 13756 (2017)..
Wintersperger, K. et al. Realization of an anomalous Floquet topological system with ultracold atoms.Nat. Phys.16, 1058–1063 (2020)..
Hu, H. P. et al. Dynamical singularities of floquet higher-order topological insulators.Phys. Rev. Lett.124, 057001 (2020)..
Zhang, L., Zhang, L.&Liu, X. J. Unified theory to characterize floquet topological phases by quench dynamics.Phys. Rev. Lett.125, 183001 (2020)..
Caio, M. D., Cooper, N. R.&Bhaseen, M. J. Quantum quenches in chern insulators.Phys. Rev. Lett.115, 236403 (2015)..
Hu, Y., Zoller, P.&Budich, J. C. Dynamical buildup of a quantized hall response from nontopological states.Phys. Rev. Lett.117, 126803 (2016)..
Wilson, J. H., Song, J. C. W.&Refael, G. Remnant geometric hall response in a quantum quench.Phys. Rev. Lett.117, 235302 (2016)..
Wang, C. et al. Scheme to measure the topological number of a chern insulator from quench dynamics.Phys. Rev. Lett.118, 185701 (2017)..
Heyl, M. Dynamical quantum phase transitions: a review.Rep. Prog. Phys.81, 054001 (2018)..
Fläschner, N. et al. Observation of dynamical vortices after quenches in a system with topology.Nat. Phys.14, 265–268 (2018)..
Song, B. et al. Observation of symmetry-protected topological band with ultracold fermions.Sci. Adv.4, eaao4748 (2018)..
Gong, Z. P.&Ueda, M. Topological entanglement-spectrum crossing in quench dynamics.Phys. Rev. Lett.121, 250601 (2018)..
McGinley, M.&Cooper, N. R. Classification of topological insulators and superconductors out of equilibrium.Phys. Rev. B99, 075148 (2019)..
Lu, Y. H., Wang, B. Z.&Liu, X. J. Ideal Weyl semimetal with 3D spin-orbit coupled ultracold quantum gas.Sci. Bull.65, 2080–2085 (2020)..
Qiu, X. Z. et al. Fixed points and dynamic topological phenomena in a parity-time-symmetric quantum quench.iScience20, 392–401 (2019)..
Xie, D. Z. et al. Topological quantum walks in momentum space with a bose-einstein condensate.Phys. Rev. Lett.124, 050502 (2020)..
Hu, H. P.&Zhao, E. H. Topological invariants for quantum quench dynamics from unitary evolution.Phys. Rev. Lett.124, 160402 (2020)..
Chen, X., Wang, C.&Yu, J. L. Linking invariant for the quench dynamics of a two-dimensional two-band Chern insulator.Phys. Rev. A101, 032104 (2020)..
Ünal, F. N., Bouhon, A.&Slager, R. J. Topological euler class as a dynamical observable in optical lattices.Phys. Rev. Lett.125, 053601 (2020)..
Zhang, L. et al. Dynamical classification of topological quantum phases.Sci. Bull.63, 1385–1391 (2018)..
Zhang, L., Zhang, L.&Liu, X. J. Dynamical detection of topological charges.Phys. Rev. A99, 053606 (2019)..
Zhang, L., Zhang, L.&Liu, X. J. Characterizing topological phases by quantum quenches: a general theory.Phys. Rev. A100, 063624 (2019)..
Zhang, L. et al. Nonequilibrium characterization of equilibrium correlated quantum phases.Phys. Rev. B103, 224308 (2021)..
Yu, X. L. et al. Quantum dynamical characterization and simulation of topological phases with high-order band inversion surfaces.PRX Quantum2, 020320 (2021)..
Li, L. H., Zhu, W. W.&Gong, J. B. Direct dynamical characterization of higher-order topological phases with nested band inversion surfaces.Sci. Bull.66, 1502–1510 (2021)..
Ye, J. C.&Li, F. X. Emergent topology under slow nonadiabatic quantum dynamics.Phys. Rev. A102, 042209 (2020)..
Sun, W. et al. Uncover topology by quantum quench dynamics.Phys. Rev. Lett.121, 250403 (2018)..
Wang, Y. et al. Experimental observation of dynamical bulk-surface correspondence in momentum space for topological phases.Phys. Rev. A100, 052328 (2019)..
Yi, C. R. et al. Observing topological charges and dynamical bulk-surface correspondence with ultracold atoms.Phys. Rev. Lett.123, 190603 (2019)..
Song, B. et al. Observation of nodal-line semimetal with ultracold fermions in an optical lattice.Nat. Phys.15, 911–916 (2019)..
Ji, W. T. et al. Quantum simulation for three-dimensional chiral topological insulator.Phys. Rev. Lett.125, 020504 (2020)..
Xin, T. et al. Quantum phases of three-dimensional chiral topological insulators on a spin quantum simulator.Phys. Rev. Lett.125, 090502 (2020)..
Niu, J. J. et al. Simulation of higher-order topological phases and related topological phase transitions in a superconducting qubit.Sci. Bull.66, 1168–1175 (2021)..
Chen, B. et al. Digital quantum simulation of Floquet topological phases with a solid-state quantum simulator.Photonics Res.9, 81–87 (2021)..
Tsomokos, D. I., Ashhab, S.&Nori, F. Using superconducting qubit circuits to engineer exotic lattice systems.Phys. Rev. A82, 052311 (2010)..
Boada, O. et al. Quantum simulation of an extra dimension.Phys. Rev. Lett.108, 133001 (2012)..
Jukić, D.&Buljan, H. Four-dimensional photonic lattices and discrete tesseract solitons.Phys. Rev. A87, 013814 (2013)..
Yuan, L. Q. et al. Synthetic dimension in photonics.Optica5, 1396–1405 (2018)..
Ozawa, T. et al. Topological photonics.Rev. Mod. Phys.91, 015006 (2019)..
Leykam, D.&Yuan, L. Q. Topological phases in ring resonators: recent progress and future prospects.Nanophotonics9, 4473–4487 (2020)..
Luo, X. W. et al. Quantum simulation of 2D topological physics in a 1D array of optical cavities.Nat. Commun.6, 7704 (2015)..
Yuan, L. Q., Shi, Y.&Fan, S. H. Photonic gauge potential in a system with a synthetic frequency dimension.Opt. Lett.41, 741–744 (2016)..
Ozawa, T. et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics.Phys. Rev. A93, 043827 (2016)..
Yuan, L. Q. et al. Photonic gauge potential in one cavity with synthetic frequency and orbital angular momentum dimensions.Phys. Rev. Lett.122, 083903 (2019)..
Celi, A. et al. Synthetic gauge fields in synthetic dimensions.Phys. Rev. Lett.112, 043001 (2014)..
Lustig, E. et al. Photonic topological insulator in synthetic dimensions.Nature567, 356–360 (2019)..
Dutt, A. et al. A single photonic cavity with two independent physical synthetic dimensions.Science367, 59–64 (2020)..
Mancini, M. et al. Observation of chiral edge states with neutral fermions in synthetic Hall ribbons.Science349, 1510–1513 (2015)..
Stuhl, B. K. et al. Visualizing edge states with an atomic Bose gas in the quantum Hall regime.Science349, 1514–1518 (2015)..
Lin, Q. et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension.Nat. Commun.7, 13731 (2016)..
Lin, Q. et al. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension.Sci. Adv.4, eaat2774 (2018)..
Bell, B. A. et al. Spectral photonic lattices with complex long-range coupling.Optica4, 1433–1436 (2017)..
Qin, C. Z. et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials.Phys. Rev. Lett.120, 133901 (2018)..
Maczewsky, L. J. et al. Synthesizing multi-dimensional excitation dynamics and localization transition in one-dimensional lattices.Nat. Photonics14, 76–81 (2020)..
Dutt, A. et al. Experimental band structure spectroscopy along a synthetic dimension.Nat. Commun.10, 3122 (2019)..
Li, G. Z. et al. Dynamic band structure measurement in the synthetic space.Sci. Adv.7, eabe4335 (2021)..
Yuan, L. Q.&Fan, S. H. Bloch oscillation and unidirectional translation of frequency in a dynamically modulated ring resonator.Optica3, 1014–1018 (2016)..
Yuan, L. Q. et al. Pulse shortening in an actively mode-locked laser with parity-time symmetry.APL Photonics3, 086103 (2018)..
Yu, D. Y., Yuan, L. Q.&Chen, X. F. Isolated photonic flatband with the effective magnetic flux in a synthetic space including the frequency dimension.Laser Photonics Rev.14, 2000041 (2020)..
Yang, Z. J. et al. Mode-locked topological insulator laser utilizing synthetic dimensions.Phys. Rev. X10, 011059 (2020)..
Yuan, L. Q. et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation.Phys. Rev. B97, 104105 (2018)..
Yariv, A.&Yeh, P.Photonics: Optical Electronics in Modern Communications6th edn (Oxford Univ. Press, 2007).
Yuan, L. Q., Dutt, A.&Fan, S. H. Synthetic frequency dimensions in dynamically modulated ring resonators.APL Photonics6, 071102 (2021)..
Liu, X. J., Liu, Z. X.&Cheng, M. Manipulating topological edge spins in a one-dimensional optical lattice.Phys. Rev. Lett.110, 076401 (2013)..
Zhang, M. et al. Electronically programmable photonic molecule.Nat. Photonics13, 36–40 (2019)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Tzuang, L. D. et al. Non-reciprocal phase shift induced by an effective magnetic flux for light.Nat. Photonics8, 701–705 (2014)..
Wang, C. et al. Nanophotonic lithium niobate electro-optic modulators.Opt. Express26, 1547–1555 (2018)..
Hu, Y. W. et al. Realization of high-dimensional frequency crystals in electro-optic microcombs.Optica7, 1189–1194 (2020)..
Desiatov, B. et al. Ultra-low-loss integrated visible photonics using thin-film lithium niobate.Optica6, 380–384 (2019)..
Haus, H. A.Waves and Fields in Optoelectronics(New Jersey: Prentice-Hall, 1984).
Saleh, B. E. A.&Teich, M. C.Fundamentals of Photonics(Wiley-Interscience, 2007).
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构