1.Nanophotonics Technology Center, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
2.Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA, Delft, The Netherlands
3.Institute of Applied Physics, Abbe Center of Photonics, Friedrich Schiller University Jena, Albert-Einstein-Straße 15, 07745, Jena, Germany
L. Kuipers (l.kuipers@tudelft.nl)
Alejandro Martínez (amartinez@ntc.upv.es)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-04,
收稿日期:2021-04-23,
修回日期:2021-09-06,
录用日期:2021-09-16
Scan QR Code
Radiationless anapole states in on-chip photonics[J]. LSA, 2021,10(11):2161-2172.
Díaz-Escobar, E. et al. Radiationless anapole states in on-chip photonics. Light: Science & Applications, 10, 2161-2172 (2021).
Radiationless anapole states in on-chip photonics[J]. LSA, 2021,10(11):2161-2172. DOI: 10.1038/s41377-021-00647-x.
Díaz-Escobar, E. et al. Radiationless anapole states in on-chip photonics. Light: Science & Applications, 10, 2161-2172 (2021). DOI: 10.1038/s41377-021-00647-x.
High-index nanoparticles are known to support radiationless states called anapoles
where dipolar and toroidal moments interfere to inhibit scattering to the far field. In order to exploit the striking properties arising from these interference conditions in photonic integrated circuits
the particles must be driven in-plane via integrated waveguides. Here
we address the excitation of electric anapole states in silicon disks when excited on-chip at telecom wavelengths. In contrast to normal illumination
we find that the anapole condition—identified by a strong reduction of the scattering—does not overlap with the near-field energy maximum
an observation attributed to retardation effects. We experimentally verify the two distinct spectral regions in individual disks illuminated in-plane from closely placed waveguide terminations via far-field and near-field measurements. Our finding has important consequences concerning the use of anapole states and interference effects of other Mie-type resonances in high-index nanoparticles for building complex photonic integrated circuitry.
Kuznetsov, A. I. et al. Optically resonant dielectric nanostructures.Science354, aag2472 (2016)..
Alaee, R., Rockstuhl, C.&Fernandez-Corbaton, I. Exact multipolar decompositions with applications in nanophotonics.Adv. Opt. Mater.7, 1800783 (2019)..
Miroshnichenko, A. E. et al. Nonradiating anapole modes in dielectric nanoparticles.Nat. Commun.6, 8069 (2015)..
Wang, R.&Dal Negro, L. Engineering non-radiative anapole modes for broadband absorption enhancement of light.Opt. Express24, 19048–19062 (2016)..
Wei, L. et al. Excitation of the radiationless anapole mode.Optica3, 799–802 (2016)..
Luk'yanchuk, B. et al. Hybrid anapole modes of high-index dielectric nanoparticles.Phys. Rev. A95, 063820 (2017)..
Wu, P. C. et al. Optical anapole metamaterial.ACS Nano12, 1920–1927 (2018)..
Li, S. Q.&Crozier, K. B. Origin of the anapole condition as revealed by a simple expansion beyond the toroidal multipole.Phys. Rev. B97, 245423 (2018)..
Monticone, F. et al. Can a nonradiating mode be externally excited? Nonscattering states versus embedded eigenstates.ACS Photon.6, 3108–3114 (2019)..
Baryshnikova, K. V. et al. Optical anapoles: concepts and applications.Adv. Opt. Mater.7, 1801350 (2019)..
Kerker, M., Wang, D. S.&Giles, C. L. Electromagnetic scattering by magnetic spheres.J. Opt. Soc. Am.73, 765–767 (1983)..
Rybin, M. V. et al. High-Qsupercavity modes in subwavelength dielectric resonators.Phys. Rev. Lett.119, 243901 (2017)..
Pendry, J. B., Schurig, D.&Smith, D. R. Controlling electromagnetic fields.Science312, 1780–1782 (2006)..
Luk'yanchuk, B. et al. Suppression of scattering for small dielectric particles: anapole mode and invisibility.Philos. Trans. Ser. A, Math. Phys. Eng. Sci.375, 20160069 (2017)..
Yang, Y. Q., Zenin, V. A.&Bozhevolnyi, S. I. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures.ACS Photon.5, 1960–1966 (2018)..
Grinblat, G. et al. Efficient third harmonic generation and nonlinear subwavelength imaging at a higher-order anapole mode in a single germanium nanodisk.ACS Nano11, 953–960 (2017)..
Grinblat, G. et al. Enhanced third harmonic generation in single germanium nanodisksexcited at the anapole mode.Nano Lett.16, 4635–4640 (2016)..
Timofeeva, M. et al. Anapoles in free-standing Ⅲ-Ⅴ nanodisks enhancing second-harmonic generation.Nano Lett.18, 3695–3702 (2018)..
Baranov, D. G. et al. Anapole-enhanced intrinsic Raman scattering from silicon nanodisks.ACS Photon.5, 2730–2736 (2018)..
Sohler, W.&De La Rue, R. Integrated optics–new material platforms, devices and applications.Laser Photon. Rev.6, A21–A22 (2012)..
Soltani, M., Yegnanarayanan, S.&Adibi, A. Ultra-highQplanar silicon microdisk resonators for chip-scale silicon photonics.Optics Exp.15, 4694–4704 (2007)..
Rodríguez-Fortuño, F. J. et al. Resolving light handedness with an on-chip silicon microdisk.ACS Photon.1, 762–767 (2014)..
Martínez, A. et al. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths.Nano Lett.10, 1506–1511 (2010)..
Borghi, M. et al. Nonlinear silicon photonics.J. Opt.19, 093002 (2017)..
Colom, R. et al. Enhanced four-wave mixing in doubly resonant Si nanoresonators.ACS Photon.6, 1295–1301 (2019)..
Bobylev, D. A., Smirnova, D. A.&Gorlach, M. A. Nonlocal response of Mie-resonant dielectric particles.Phys. Rev. B102, 115110 (2020)..
Patoux, A. et al. Polarizabilities of complex individual dielectric or plasmonic nanostructures.Phys. Rev. B101, 235418 (2020)..
Davis, T. J., Vernon, K. C.&Gómez, D. E. Effect of retardation on localized surface plasmon resonances in a metallic nanorod.Opt. Exp.17, 23655–23663 (2009)..
Yu, R. W., Liz-Marzán, L. M.&De Abajo, F. J. G. Universal analytical modeling of plasmonic nanoparticles.Chem. Soc. Rev.46, 6710–6724 (2017)..
Espinosa-Soria, A., Griol, A.&Martínez, A. Experimental measurement of plasmonic nanostructures embedded in silicon waveguide gaps.Opt. Exp.24, 9592–9601 (2016)..
Espinosa-Soria, A. et al. Coherent control of a plasmonic nanoantenna integrated on a silicon chip.ACS Photon.5, 2712–2717 (2018)..
Gongora, J. S. T. et al. Anapole nanolasers for mode-locking and ultrafast pulse generation.Nat. Commun.8, 15535 (2017)..
Novotny, L.&Hecht, B.Principles of Nano-Optics.(Cambridge University Press, Cambridge, 2006).
Espinosa-Soria, A.&Martínez, A. Transverse spin and spin-orbit coupling in silicon waveguides.IEEE Photon. Technol. Lett.28, 1561–1564 (2016)..
Cai, X. L. et al. Integrated compact optical vortex beam emitters.Science338, 363–366 (2012)..
Burresi, M. et al. Observation of polarization singularities at the nanoscale.Phys. Rev. Lett.102, 033902 (2009)..
Le Feber, B. et al. Simultaneous measurement of nanoscale electric and magnetic optical fields.Nat. Photon.8, 43–46 (2014)..
Burresi, M. et al. Magnetic light-matter interactions in a photonic crystal nanocavity.Phys. Rev. Lett.105, 123901 (2010)..
Vignolini, S. et al. Magnetic imaging in photonic crystal microcavities.Phys. Rev. Lett.105, 123902 (2010)..
Koshelev, K. et al. Subwavelength dielectric resonators for nonlinear nanophotonics.Science367, 288–292 (2020)..
Karabchevsky, A. et al. On-chip nanophotonics and future challenges.Nanophotonics9, 3733–3753 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构