1.GRINTECH GmbH, Schillerstr. 1, 07745, Jena, Germany
2.Leibniz Institute of Photonic Technology, Member of Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745, Jena, Germany
3.Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
Bernhard Messerschmidt (messerschmidt@grintech.de)
Juergen Popp (juergen.popp@leibniz-ipht.de)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-05,
收稿日期:2021-05-12,
修回日期:2021-09-06,
录用日期:2021-09-15
Scan QR Code
Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept[J]. LSA, 2021,10(11):2173-2183.
Pshenay-Severin, E. et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light: Science & Applications, 10, 2173-2183 (2021).
Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept[J]. LSA, 2021,10(11):2173-2183. DOI: 10.1038/s41377-021-00648-w.
Pshenay-Severin, E. et al. Multimodal nonlinear endomicroscopic imaging probe using a double-core double-clad fiber and focus-combining micro-optical concept. Light: Science & Applications, 10, 2173-2183 (2021). DOI: 10.1038/s41377-021-00648-w.
Multimodal non-linear microscopy combining coherent anti-Stokes Raman scattering
second harmonic generation
and two-photon excited fluorescence has proved to be a versatile and powerful tool enabling the label-free investigation of tissue structure
molecular composition
and correlation with function and disease status. For a routine medical application
the implementation of this approach into an in vivo imaging endoscope is required. However
this is a difficult task due to the requirements of a multicolour ultrashort laser delivery from a compact and robust laser source through a fiber with low losses and temporal synchronization
the efficient signal collection in epi-direction
the need for small-diameter but highly corrected endomicroobjectives of high numerical aperture and compact scanners. Here
we introduce an ultra-compact fiber-scanning endoscope platform for multimodal non-linear endomicroscopy in combination with a compact four-wave mixing based fiber laser. The heart of this fiber-scanning endoscope is an in-house custom-designed
single mode
double clad
double core pure silica fiber in combination with a 2.4 mm diameter NIR-dual-waveband corrected endomicroscopic objective of 0.55 numerical aperture and 180 µm field of view for non-linear imaging
allowing a background free
low-loss
high peak power laser delivery
and an efficient signal collection in backward direction. A linear diffractive optical grating overlays pump and Stokes laser foci across the full field of view
such that diffraction-limited performance is demonstrated for tissue imaging at one frame per second with sub-micron spatial resolution and at a high transmission of 65% from the laser to the specimen using a distal resonant fiber scanner.
Yue, S., Slipchenko, M. N.&Cheng, J. X. Multimodal nonlinear optical microscopy.Laser Photonics Rev.5, 496-512 (2011)..
Krafft, C. et al. Developments in spontaneous and coherent Raman scattering microscopic imaging for biomedical applications.Chem. Soc. Rev.45, 1819-1849 (2016)..
Krafft, C. et al. Label-free molecular imaging of biological cells and tissues by linear and nonlinear raman spectroscopic approaches.Angew. Chem. Int. Ed.56, 4392-4430 (2017)..
Zumbusch, A., Holtom, G. R.&Xie, X. S. Three-dimensional vibrational imaging by coherent anti-stokes raman scattering.Phys. Rev. Lett.82, 4142-4145 (1999)..
Légaré, F. et al. Towards CARS endoscopy.Opt. Express14, 4427-4432 (2006)..
Zirak, P. et al. Invited Article: a rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view.APL Photonics3, 092409 (2018)..
Lukic, A. et al. Endoscopic fiber probe for nonlinear spectroscopic imaging.Optica4, 496-501 (2017)..
Murugkar, S. et al. Miniaturized multimodal CARS microscope based on MEMS scanning and a single laser source.Opt. Express18, 23796-23804 (2010)..
Brown, C. M. et al. Optomechanical design and fabricationof resonant microscanners for a scanning fiber endoscope.Optical Eng.45, 043001 (2006)..
Saar, B. G. et al. Coherent Raman scanning fiber endoscopy.Opt. Lett.36, 2396-2398 (2011)..
Lombardini, A. et al. High-resolution multimodal flexible coherent Raman endoscope.Light. : Sci. Appl.7, 10 (2018)..
Trägårdh, J. et al. Label-free CARS microscopy through a multimode fiber endoscope.Opt. Express27, 30055-30066 (2019)..
Gottschall, T. et al. Fiber-based light sources for biomedical applications of coherent anti-Stokes Raman scattering microscopy.Laser Photonics Rev.9, 435-451, https://doi.org/10.1002/lpor.201500023 (2015)..
Liang, W. X. et al. Nonlinear optical endomicroscopy for label-free functional histology in vivo.Light. : Sci. Appl.6, e17082 (2017)..
Balu, M. et al. Fiber delivered probe for efficient CARS imaging of tissues.Opt. Express18, 2380-2388 (2010)..
Jun, C. S. et al. Investigation of a four-wave mixing signal generated in fiber-delivered CARS microscopy.Appl. Opt.49, 3916-3921 (2010)..
Deladurantaye, P. et al. Advances in engineering of high contrast CARS imaging endoscopes.Opt. Express22, 25053-25064 (2014)..
Wang, K.&Xu, C. Fiber-delivered picosecond source for coherent Raman scattering imaging.Opt. Lett.36, 4233-4235 (2011)..
Brustlein, S. et al. Double-clad hollow core photonic crystal fiber for coherent Raman endoscope.Opt. Express19, 12562-12568 (2011)..
Andreana, M. et al. Ultrashort pulse Kagome hollow-core photonic crystal fiber delivery for nonlinear optical imaging.Opt. Lett.44, 1588-1591 (2019)..
Subramanian, K. et al. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies.Biomed. Opt. Express7, 4639-4653 (2016)..
Wang, Y. Y. et al. Hollow-core photonic crystal fibre for high power laser beam delivery.High. Power Laser Sci. Eng.1, 17-28 (2013)..
Poletti, F., Petrovich, M. N.&Richardson, D. J. Hollow-core photonic bandgap fibers: technology and applications.Nanophotonics2, 315-340 (2013)..
Kudlinski, A. et al. Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy.Opt. Express28, 15062-15070 (2020)..
Seibel, E. J.&Smithwick, Q. Y. J. Unique features of optical scanning, single fiber endoscopy.Lasers Surg. Med.30, 177-183 (2002)..
Knittel, J. et al. Endoscope-compatible confocal microscope using a gradient index-lens system.Opt. Commun.188, 267-273 (2001)..
Barretto, R. P. J., Messerschmidt, B.&Schnitzer, M. J. In vivo fluorescence imaging with high-resolution microlenses.Nat. Methods6, 511-512 (2009)..
Baumgartl, M. et al. All-fiber laser source for CARS microscopy based on fiber optical parametric frequency conversion.Opt. Express20, 4484-4493 (2012)..
Yu, Y., Ramachandran, P. V.&Wang, M. C. Shedding new light on lipid functions with CARS and SRS microscopy.Biochimica et. Biophysica Acta (BBA)-Mol. Cell Biol. Lipids1841, 1120-1129 (2014)..
Evans, C. L.&Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine.Annu. Rev. Anal. Chem.1, 883-909 (2008)..
Schuster, K. et al. Material and technology trends in fiber optics.Adv. Optical Technol.3, 447-468 (2014)..
Meinert, T. et al. Varifocal MOEMS fiber scanner for confocal endomicroscopy.Opt. Express22, 31529-31544 (2014)..
Ducourthial, G. et al. Development of a real-time flexible multiphoton microendoscope for label-free imaging in a live animal.Sci. Rep.5, 18303 (2015)..
Buralli, D. A. et al. Optical performance of holographic kinoforms.Appl. Opt.28, 976-983 (1989)..
Brochado, A. R. et al. Species-specific activity of antibacterial drug combinations.Nature559, 259-263 (2018)..
Glavis-Bloom, J. et al. Recent Advances on Model Hosts, vol. 710 Advances in Experimental Medicine and Biolgy Springer (New York: Springer, 2012), 11-17.
Rivera, D. R. et al. Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue.Proc. Natl Acad. Sci. USA108, 17598-17603 (2011)..
Heuke, S. et al. Detection and discrimination of non-melanoma skin cancer by multimodal imaging.Healthcare1, 64-83 (2013)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构