1.School of Earth and Space Science, University of Science and Technology of China, 230026, Hefei, China
2.School of Atmospheric Physics, Nanjing University of Information Science & Technology, 210044, Nanjing, China
3.Hefei National Laboratory for Physical Sciences at the Microscale, 230026, Heifei, China
4.Changcheng Institute of Metrology & Measurement, Aviation Industry Corporation of China, 100095, Beijing, China
5.State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, 230037, Hefei, China
6.State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, 361102, Xiamen, China
7.Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 200050, Shanghai, China
Haiyun Xia (hsia@ustc.edu.cn)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-12,
收稿日期:2021-05-15,
修回日期:2021-09-10,
录用日期:2021-09-21
Scan QR Code
Photon-counting distributed free-space spectroscopy[J]. LSA, 2021,10(11):2207-2216.
Yu, S. F. et al. Photon-counting distributed free-space spectroscopy. Light: Science & Applications, 10, 2207-2216 (2021).
Photon-counting distributed free-space spectroscopy[J]. LSA, 2021,10(11):2207-2216. DOI: 10.1038/s41377-021-00650-2.
Yu, S. F. et al. Photon-counting distributed free-space spectroscopy. Light: Science & Applications, 10, 2207-2216 (2021). DOI: 10.1038/s41377-021-00650-2.
Spectroscopy is a well-established nonintrusive tool that has played an important role in identifying and quantifying substances
from quantum descriptions to chemical and biomedical diagnostics. Challenges exist in accurate spectrum analysis in free space
which hinders us from understanding the composition of multiple gases and the chemical processes in the atmosphere. A photon-counting distributed free-space spectroscopy is proposed and demonstrated using lidar technique
incorporating a comb-referenced frequency-scanning laser and a superconducting nanowire single-photon detector. It is suitable for remote spectrum analysis with a range r
esolution over a wide band. As an example
a continuous field experiment is carried out over 72 h to obtain the spectra of carbon dioxide (CO
2
) and semi-heavy water (HDO
isotopic water vapor) in 6 km
with a range resolution of 60 m and a time resolution of 10 min. Compared to the methods that obtain only column-integrated spectra over kilometer-scale
the range resolution is improved by 2–3 orders of magnitude in this work. The CO
2
and HDO concentrations are retrieved from the spectra acquired with uncertainties as low as ±1.2% and ±14.3%
respectively. This method holds much promise for increasing knowledge of atmospheric environment and chemistry researches
especially in terms of the evolution of complex molecular spectra in open areas.
Berden, G., Peeters, R.&Meijer, G. Cavity ring-down spectroscopy: experimental schemes and applications.Int. Rev. Phys. Chem.19, 565–607 (2000)..
Garnache, A. et al. High-sensitivity intracavity laser absorption spectroscopy with vertical-external-cavity surface-emitting semiconductor lasers.Opt. Lett.24, 826–828 (1999)..
Picqué, N.&Hänsch, T. W. Frequency comb spectroscopy.Nat. Photonics13, 146–157 (2019)..
Diddams, S. A., Hollberg, L.&Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb.Nature445, 627–630 (2007)..
Mandon, J., Guelachvili, G.&Picqué, N. Fourier transform spectroscopy with a laser frequency comb.Nat. Photonics3, 99–102 (2009)..
Coddington, I., Newbury, N.&Swann, W. Dual-comb spectroscopy.Optica3, 414–426 (2016)..
Hoghooghi, N. et al. Broadband coherent cavity-enhanced dual-comb spectroscopy.Optica6, 28–33 (2019)..
Zhang, Z. et al. Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection.Appl. Phys. Lett.116, 171106 (2020)..
Morgenweg, J., Barmes, I.&Eikema, K. S. E. Ramsey-comb spectroscopy with intense ultrashort laser pulses.Nat. Phys.10, 30–33 (2014)..
Frankenberg, C. et al. The Orbiting Carbon Observatory (OCO-2): spectrometer performance evaluation using pre-launch direct sun measurements.Atmos. Meas. Tech.8, 301–313 (2015)..
Morino, I. et al. Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra.Atmos. Meas. Tech.4, 1061–1076 (2011)..
Beer, R.Remote Sensing by Fourier Transform Spectrometry(John Wiley&Sons, 1992).
Brown, L. R. et al. Molecular line parameters for the atmospheric trace molecule spectroscopy experiment.Appl. Opt.26, 5154–5182 (1987)..
Platt, U.&Stutz, J.Differential Optical Absorption Spectroscopy: Principles and Applications, 135–174 (Springer, 2008).
Zhang, C. X. et al. First observation of tropospheric nitrogen dioxide from the environmental trace gases monitoring instrument onboard the GaoFen-5 satellite.Light: Sci. Appl.9, 66 (2020)..
Coburn, S. et al. Regional trace-gas source attribution using a field-deployed dual frequency comb spectrometer.Optica5, 320–327 (2018)..
Rieker, G. B. et al.Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths.Optica1, 290–298 (2014)..
Weitkamp, C.Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere(Springer, 2005).
Fujii, T.&Fukuchi, T.Laser Remote Sensing(CRC Press, 2005).
Bohren, C. F.&Clothiaux, E. E.Fundamentals of Atmospheric Radiation: An Introduction with 400 Problems(Wiley-VCH Verlag GmbH&Co. KGaA, 2006).
Cadiou, E. et al. Atmospheric boundary layer CO2remote sensing with a direct detection LIDAR instrument based on a widely tunable optical parametric source.Opt. Lett.42, 4044–4047 (2017)..
Shibata, Y., Nagasawa, C.&Abo, M. Development of 1.6 μm DIAL using an OPG/OPA transmitter for measuring atmospheric CO2concentration profiles.Appl. Opt.56, 1194–1201 (2017)..
Queisser, M. et al. Portable laser spectrometer for airborne and ground-based remote sensing of geological CO2emissions.Opt. Lett.42, 2782–2785 (2017)..
Abshire, J. B. et al. Airborne measurements of CO2column concentration and range using a pulsed direct-detection IPDA lidar.Remote Sens.6, 443–469 (2014)..
Numata, K. et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide.Appl. Opt.50, 1047–1056 (2011)..
Barria, J. B. et al. Multispecies high-energy emitter for CO2, CH4, and H2O monitoring in the 2 μm range.Opt. Lett.39, 6719–6722 (2014)..
Jost, J. D., Hall, J. L.&Ye, J. Continuously tunable, precise, single frequency optical signal generator.Opt. Express10, 515–520 (2002)..
Schibli, T. R. et al. Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb.Opt. Lett.30, 2323–2325 (2005)..
Park, S. E. et al. Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb.Opt. Lett.31, 3594–3596 (2006)..
Li, H. et al. Large-sensitive-area superconducting nanowire single-photon detector at 850 nm with high detection efficiency.Opt. Express23, 17301–17308 (2015)..
Qiu, J. W. et al. Micro-pulse polarization lidar at 1.5 μm using a single superconducting nanowire single-photon detector.Opt. Lett.42, 4454–4457 (2017)..
McCarthy, A. et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection.Opt. Express21, 8904–8915 (2013)..
Taylor, G. G. et al. Photon counting LIDAR at 2.3 µm wavelength with superconducting nanowires.Opt. Express27, 38147–38158 (2019)..
Verma, V. B. et al. Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors.APL Photonics6, 056101 (2021)..
Wang, J. et al. Large Chinese land carbon sink estimated from atmospheric carbon dioxide data.Nature586, 720–723 (2020)..
Ambrico, P. F. et al. Sensitivity analysis of differential absorption lidar measurements in the mid-infrared region.Appl. Opt.39, 6847–6865 (2000)..
Theopold, F. A.&Bösenberg, J. Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment.J. Atmos. Ocean. Technol.10, 165–179 (1993)..
Gordon, I. E. et al. The HITRAN2016 molecular spectroscopic database.J. Quant. Spectrosc. Radiat. Transf.203, 3–69 (2017)..
Arisa, S. et al. Coupling efficiency of laser beam to multimode fiber for free space optical communication. In Sodnik, Z., Cugny, B., Karafolas, N. (Eds. )Proceedings of SPIE 10563, International Conference on Space Optics-ICSO 2014, 17 November 2017, Tenerife, Canary Islands, Spain, 105630Y (SPIE, 2014).
Yu, S. F. et al. Multi-frequency differential absorption lidar incorporating a comb-referenced scanning laser for gas spectrum analysis.Opt. Express29, 12984–12995 (2021)..
Yuan, J. L. et al. Identifying cloud, precipitation, windshear, and turbulence by deep analysis of the power spectrum of coherent Doppler wind lidar.Opt. Express28, 37406–37418 (2020)..
Armstrong, B. H. Spectrum line profiles: the Voigt function.J. Quant. Spectrosc. Radiat. Transf.7, 61–88 (1967)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构