1.Université Grenoble Alpes, CEA, IRIG-PHELIQS, "Nanophysique et Semiconducteurs" group, F-38000, Grenoble, France
2.LabSem-CETUC, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 22451-900, Brazil
3.Complex Photonic Systems (COPS), MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, the Netherlands
Jean-Michel Gérard (jean-michel.gerard@cea.fr)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-19,
收稿日期:2021-02-05,
修回日期:2021-09-06,
录用日期:2021-09-12
Scan QR Code
Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers[J]. LSA, 2021,10(11):2083-2097.
Peinke, E. et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science & Applications, 10, 2083-2097 (2021).
Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers[J]. LSA, 2021,10(11):2083-2097. DOI: 10.1038/s41377-021-00654-y.
Peinke, E. et al. Tailoring the properties of quantum dot-micropillars by ultrafast optical injection of free charge carriers. Light: Science & Applications, 10, 2083-2097 (2021). DOI: 10.1038/s41377-021-00654-y.
We review recent studies of cavity switching induced by the optical injection of free carriers in micropillar cavities containing quantum dots. Using the quantum dots as a broadband internal light source and a streak camera as detector
we track the resonance frequencies for a large set of modes with picosecond time resolution. We report a record-fast switch-on time constant (1.5 ps) and observe major transient modifications of the modal structure of the micropillar on the 10 ps time scale: mode crossings are induced by a focused symmetric injection of free carriers
while a lifting of several mode degeneracies is observed when off-axis injection breaks the rotational symmetry of the micropillar. We show theoretically and experimentally that cavity switching can be used to tailor the dynamic properties of the coupled QD–cavity system. We report the generation of ultrashort spontaneous emission pulses (as short as 6 ps duration) by a collection of frequency-selected QDs in a switched pillar microcavity. These pulses display a very small coherence length
attractive for ultrafast speckle-free imaging. Moreover
the control of QD-mode coupling on the 10 ps time scale establishes cavity switching as an appealing resource for quantum photonics.
Gérard, J. M. Solid-state cavity-quantum electrodynamics with self-assembled quantum dots. InSingle Quantum Dots: Fundamentals, Applications, and New Concepts. Topics in Applied Physics.Vol. 90 (ed. Michler, P. ) 269 (Springer, 2003).
Noda, S., Fujita, T.&Asano, N. Spontaneous-emission control by photonic crystals and nanocavities.Nat. Photonics1, 449–458 (2007)..
Reitzenstein, S. Semiconductor quantum dot-microcavities for quantum optics in solid state.IEEE J. Sel. Top. Quantum Electron.18, 1733–1746 (2012)..
Lodahl, P., Mahmoodian, S.&Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures.Rev. Mod. Phys.87, 347–400 (2015)..
Reithmaier, J. P. Strong exciton–photon coupling in semiconductor quantum dot systems.Semicond. Sci. Technol.23, 123001 (2008)..
Weisbuch, C. et al. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity.Phys. Rev. Lett.69, 3314–3317 (1992)..
Gérard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity.Phys. Rev. Lett.81, 1110–1113 (1998)..
Lodahl, P. et al. Controlling the dynamics of spontaneous emission from quantumdots by photonic crystals.Nature430, 654–657 (2004)..
Bleuse, J. et al. Inhibition, enhancement, and control of spontaneous emission in photonic nanowires.Phys. Rev. Lett.106, 103601 (2011)..
Leistikow, M. D. et al. Inhibited spontaneous emission of quantum dots observed in a 3D photonic band gap.Phys. Rev. Lett.107, 193903 (2011)..
Gérard, J. M.&Gayral, B. Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities.J. Lightwave Technol.17, 2089–2095 (1999)..
Moreau, E. et al. Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities.Appl. Phys. Lett.79, 2865–2867 (2001)..
Santori, C. et al. Indistinguishable photons from a single-photon device.Nature419, 594–597 (2002)..
Somaschi, N. et al. Near-optimal single-photon sources in the solid state.Nat. Photonics10, 340–345 (2016)..
Ding, X. et al. On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar.Phys. Rev. Lett.116, 020401 (2016)..
Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability.Nat. Nanotechnol.14, 586–593 (2019)..
Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability.Phys. Rev. Lett.122, 113602 (2019)..
Raimond, J. M., Brune, M.&Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity.Rev. Mod. Phys.73, 565–582 (2001)..
Leonard, S. W.et al. Ultrafast band-edge tuning of a two-dimensional silicon photonic crystal via free-carrier injection.Phys. Rev. B66, 161102 (2002)..
Johnson, P. M., Koenderink, A. F.&Vos, W. L. Ultrafast switching of photonic density of states in photonic crystals.Phys. Rev. B66, 081102 (2002)..
Mazurenko, D. A. et al. Ultrafast optical switching in three-dimensional photonic crystals.Phys. Rev. Lett.91, 213903 (2003)..
Becker, C. et al. Two-color pump-probe experiments on silicon inverse opals.Appl. Phys. Lett.87, 091111 (2005)..
Euser, T. G. et al. Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals.J. Appl. Phys.102, 053111 (2007)..
Euser, T. G. et al. All-optical octave-broad ultrafast switching of Si woodpile photonic band gap crystals.Phys. Rev. B77, 115214 (2008)..
Thyrrestrup, H. et al. Non-exponential spontaneous emission dynamics for emitters in a time-dependent optical cavity.Opt. Express21, 23130–23144 (2013)..
Cosacchi, M. et al. On-demand generation of higher-order Fock states in quantum-dot–cavity systems.Phys. Rev. Res.2, 033489 (2020)..
Rohde, P. P., Ralph, T. C.&Nielsen, M. A. Optimal photons for quantum-information processing.Phys. Rev. A72, 052332 (2005)..
Stobińska, M., Alber, G.&Leuchs, G. Perfect excitation of a matter qubit by a single photon in free space.Europhys. Lett.86, 14007 (2009)..
Fernée, M. J., Rubinsztein-Dunlop, H.&Milburn, G. J. Improving single-photon sources with Stark tuning.Phys. Rev. A75, 043815 (2007)..
Johne, R.&Fiore, A. Single-photon absorption and dynamic control of the exciton energy in a coupled quantum-dot–cavity system.Phys. Rev. A84, 053850 (2011)..
Faraon, A. et al. Fast electrical control of a quantum dot strongly coupled to a photonic-crystal cavity.Phys. Rev. Lett.104, 047402 (2010)..
Berstermann, T. et al. Optical bandpass switching by modulating a microcavity using ultrafast acoustics.Phys. Rev. B81, 085316 (2010)..
Fuhrmann, D. A. et al. Dynamic modulation of photonic crystal nanocavities using gigahertz acoustic phonons.Nat. Photonics5, 605–609 (2011)..
Ctistis, G. et al. Ultimate fast optical switching of a planar microcavity in the telecom wavelength range.Appl. Phys. Lett.98, 161114 (2011)..
Eckhouse, V. et al. Kerr-induced all optical switching in a GaInP photonic crystal Fabry-Perot resonator.Opt. Express20, 8524–8534 (2012)..
Yüce, E. et al. All-optical switching of a microcavity repeated at terahertz rates.Opt. Lett.38, 374–376 (2013)..
Jewell, J. L. et al. GaAs-AlAs monolithic microresonator arrays.Appl. Phys. Lett.51, 94–96 (1987)..
Kuszelewicz, R. et al. Monolithic GaAs/AlAs optical bistable étalons with improved switching characteristics.Appl. Phys. Lett.53, 2138–2140 (1988)..
Notomi, M.&Mitsugi, S. Wavelength conversion via dynamic refractive index tuning of a cavity.Phys. Rev. A73, 051803 (2006)..
Gaburro, Z. et al. Photon energy lifter.Opt. Express14, 7270–7278 (2006)..
Preble, S. F., Xu, Q. F.&Lipson, M. Changing the colour of light in a silicon resonator.Nat. Photonics1, 293–296 (2007)..
Preble, S. et al. Single photon adiabatic wavelength conversion.Appl. Phys. Lett.101, 171110 (2012)..
McCutcheon, M. W. et al. Emission spectrum of electromagnetic energy stored in a dynamically perturbed optical microcavity.Opt. Express15, 11472–11480 (2007)..
Tanabe, T. et al. Dynamic release of trapped light from an ultrahigh-Qnanocavity via adiabatic frequency tuning.Phys. Rev. Lett.102, 043907 (2009)..
Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control.Nat. Photonics6, 56–61 (2012)..
Pellegrino, D. et al. Deterministic control of radiative processes by shaping the mode field.Appl. Phys. Lett.112, 161110 (2018)..
Jin, C. Y. et al. Ultrafast non-local control of spontaneous emission.Nat. Nanotechnol.9, 886–890 (2014)..
Sattler, T. et al. Probing microcavity switching events on thepicosecond time scale using quantum dots as a broadband internal fluorescent source.APL Photonics5, 126104 (2020)..
Harding, P. J. et al. Dynamical ultrafast all-optical switching of planar GaAs/AlAs photonic microcavities.Appl. Phys. Lett.91, 111103 (2007)..
Nozaki, K. et al. Sub-femtojoule all-optical switching using a photonic-crystal nanocavity.Nat. Photonics4, 477–483 (2010)..
Harding, P. J. et al. Observation of a stronger-than-adiabatic change of light trapped in an ultrafast switched GaAs-AlAs microcavity.J. Optical Soc. Am. B29, A1–A5 (2012)..
Thyrrestrup, H. et al. Differential ultrafast all-optical switching of the resonances of a micropillar cavity.Appl. Phys. Lett.105, 111115 (2014)..
Hornecker, G. et al. Temporal shaping of single-photon pulses.Proc. SPIE 9505, 9505N, Quantum Optics and Quantum Information Transfer and Processing 2015(eds Banaszek, K.&Silberhorn, C. ) (SPIE 2015).
Peinke, E. et al. Generation of ultrashort (~10 ps) spontaneous emission pulses by quantum dots in a switched optical microcavity. Preprint at:https://arxiv.org/abs/1910.10518https://arxiv.org/abs/1910.10518(2019).
Sattler, T. et al. Cavity switching: A novel resource for solid-state quantum optics,2017 19th International Conference on Transparent Optical Networks (ICTON), 2017, pp. 1-4,https://doi.org/10.1109/ICTON.2017.8025177https://doi.org/10.1109/ICTON.2017.8025177..
Euser, T. G., Harding, P. J.&Vos, W. L. Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.Rev. Sci. Instrum.80, 073104 (2009)..
Rivera, T. et al. Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy.Appl. Phys. Lett.74, 911–913 (1999)..
Jewell, J. L. et al. Transverse modes, waveguide dispersion, and 30 ps recovery in submicron GaAs/AlAs microresonators.Appl. Phys. Lett.55, 22 (1989)..
Ctistis, G. et al. Optical characterization and selective addressing of the resonant modes of a micropillar cavity with a white light beam.Phys. Rev. B82, 195330 (2010)..
Gérard, J. M. et al. Quantum boxes as active probes for photonic microstructures: the pillar microcavity case.Appl. Phys. Lett.69, 449–451 (1996)..
Fushman, I. et al. Ultrafast nonlinear optical tuning of photonic crystal cavities.Appl. Phys. Lett.90, 091118 (2007)..
Oudar, J. L. et al. Subpicosecond spectral hole burning due to nonthermalized photoexcited carriers in GaAs.Phys. Rev. Lett.55, 2074–2077 (1985)..
Bennett, B. R., Soref, R. A.&Del Alamo, J.A. Carrier-induced change in refractive index of InP, GaAs and InGaAsP.IEEE J. Quantum Electron.26, 113–122 (1990)..
Yariv, A.Optical Electronics4th edn (Saunders College Publishing, 1991).
Vassallo, C.Optical Waveguide Concepts(Elsevier, 1991).
Gregersen, N. et al. Numerical and experimental study of theQfactor of high-Qmicropillar cavities.IEEE J. Quantum Electron.46, 1470–1483 (2010)..
Arnold, C. et al. Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200 000.Appl. Phys. Lett.100, 111111 (2012)..
Gayral, B.&Gérard, J. M. Photoluminescence experiment on quantum dots embedded in a large Purcell-factor microcavity.Phys. Rev. B78, 235306 (2008)..
Kolchin, P. et al. Electro-optic modulation of single photons.Phys. Rev. Lett.101, 103601 (2008)..
Specht, H. P. et al. Phase shaping of single-photon wave packets.Nat. Photonics3, 469–472 (2009)..
Rakher, M. T.&Srinivasan, K. Subnanosecond electro-optic modulation of triggered single photons from a quantum dot.Appl. Phys. Lett.98, 211103 (2011)..
Peinke, E. T.All-Optical Ultrafast Switching of Semiconductor Micropillar Cavities: Basics and Applications to Quantum Optics. PhD thesis, Université Grenoble Alpes (2016).
Weiss, L. et al. Erbium dopants in nanophotonic silicon waveguides.Optica8, 40–41 (2021)..
Beaufils, C. et al. Optical properties of an ensemble of G-centers in silicon.Phys. Rev. B97, 035303 (2018)..
Marzin, J. Y. et al. Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs.Phys. Rev. Lett.73, 716–719 (1994)..
Grundmann, M. et al. Ultranarrow luminescence lines from single quantum dots.Phys. Rev. Lett.74, 4043–4046 (1995)..
Bimberg, D., Grundmann, M.&Ledentsov, N. N.Quantum Dot Heterostructures(John Wiley, 1999).
Gérard, J. M. et al. Novel prospects for self-assembled InAs/GaAs quantum boxes.J. Cryst. Growth201-202, 1109–1116 (1999)..
Bayer, M.&Forchel, A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots.Phys. Rev. B65, 041308(R) (2002)..
Berthelot, A. et al. Unconventional motional narrowing in the optical spectrum of a semiconductor quantum dot.Nat. Phys.2, 759–764 (2006)..
Li, Q. H. et al. Light scattering of semitransparent sintered polytetrafluoroethylene films.J. Biomed. Opt.13, 054064 (2008)..
Goodman, J. W.Speckle Phenomena in Optics: Theory and Applications2nd edn (SPIE Press, 2020).
Gayral, B. et al. Time-resolved probing of the Purcell effect for InAs quantum boxes in GaAs microdisks.Appl. Phys. Lett.78, 2828–2830 (2001)..
Gérard, J. M. Prospects of high-efficiency quantum boxes obtained by direct epitaxial growth. InConfined Electrons and Photons: New Physics and Applications(ed. Burstein, E.&Weisbuch, C. ) (Springer, 1995).
Mosk, A. P. et al. Controlling waves in space and time for imaging and focusing in complex media.Nat. Photonics6, 283–292 (2012)..
Rotter, S.&Gigan, S. Light fields in complex media: mesoscopic scattering meets wave control.Rev. Mod. Phys.89, 015005 (2017)..
Akhlaghi, M. I.&Dogariu, A. Tracking hidden objects using stochastic probing.Optica4, 447–453 (2017)..
van der Bos, A. et al. iLIF: illumination by laser-induced fluorescence for single flash imaging on a nanoseconds timescale.Exp. Fluids51, 1283–1289 (2011)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构