1.State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, 100084 Beijing, China
2.Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing and School of Information, Science and Technology, Fudan University, Shanghai 200433, China
3.School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074 China
4.Department of Electrical Engineering, Pennsylvania State University, University Park, PA 16802, USA
5.Optoelectronic Division, Department of Engineering, University of Sannio, I-82100 Benevento, Italy
6.Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
7.Nanophotonics Research Centre, Shenzhen Key Laboratory of Micro-Scale Optical Information Technology, Shenzhen University, Shenzhen 518060, China
8.Key Laboratory of Photonic Control Technology, Ministry of Education, Tsinghua University, 100084 Beijing, China
9.Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000 Zhejiang, China
10.Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
Qirong Xiao (xiaoqirong@mail.tsinghua.edu.cn)
Shulin Sun (sls@fudan.edu.cn)
Minming Zhang (mmz@hust.edu.cn)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-22,
收稿日期:2021-05-22,
修回日期:2021-09-17,
录用日期:2021-09-28
Scan QR Code
Optical meta-waveguides for integrated photonics and beyond[J]. LSA, 2021,10(12):2263-2306.
Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light: Science & Applications, 10, 2263-2306 (2021).
Optical meta-waveguides for integrated photonics and beyond[J]. LSA, 2021,10(12):2263-2306. DOI: 10.1038/s41377-021-00655-x.
Meng, Y. et al. Optical meta-waveguides for integrated photonics and beyond. Light: Science & Applications, 10, 2263-2306 (2021). DOI: 10.1038/s41377-021-00655-x.
The growing maturity of nanofabrication has ushered massive sophisticated optical structures available on a photonic chip. The integration of subwavelength-structured metasurfaces and metamaterials on the canonical building block of optical waveguides is gradually reshaping the landscape of photonic integrated circuits
giving rise to numerous meta-waveguides with unprecedented strength in controlling guided electromagnetic waves. Here
we review recent advances in meta-structured waveguides that synergize various functional subwavelength photonic architectures with diverse waveguide platforms
such as dielectric or plasmonic waveguides and optical fibers. Foundational results and representative applications are comprehensively summarized. Brief physical models with explicit design tutorials
either physical intuition-based design methods or computer algorithms-based inverse designs
are cataloged as well. We highlight how meta-optics can infuse new degrees of freedom to waveguide-based devices and systems
by enhancing light-matter interaction strength to drastically boost device performance
or offering a versatile designer media for manipulating light in nanoscale to enable novel functionalities. We further discuss current challenges and outline emerging opportunities of this vibrant field for various applications in photonic integrated circuits
biomedical sensing
artificial intelligence and beyond.
Marpaung, D., Yao, J. P.&Capmany, J. Integrated microwave photonics.Nat. Photonics13, 80–90 (2019)..
Miller, D. A. B. Optical interconnects to silicon.IEEE J. Sel. Top. Quantum Electron.6, 1312–1317 (2000)..
Sun, C. et al. Single-chip microprocessor that communicates directly using light.Nature528, 534–538 (2015)..
Atabaki, A. H. et al. Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip.Nature556, 349–354 (2018)..
Caulfield, H. J.&Dolev, S. Why future supercomputing requires optics.Nat. Photonics4, 261–263 (2010)..
Zhong, H. S. et al. Quantum computational advantage using photons.Science370, 1460–1463 (2020)..
Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics.Nature557, 81–85 (2018)..
Bogaerts, W. et al. Programmable photonic circuits.Nature586, 207–216 (2020)..
Rickman, A. The commercialization of silicon photonics.Nat. Photonics8, 579–582 (2014)..
Wang, J. W. et al. Multidimensional quantum entanglement with large-scale integrated optics.Science360, 285–291 (2018)..
Elshaari, A. W. et al. Hybrid integrated quantum photonic circuits.Nat. Photonics14, 285–298 (2020)..
Cheben, P. et al. Subwavelength integrated photonics.Nature560, 565–572 (2018)..
Sun, L. et al. Subwavelength structured silicon waveguides and photonic devices.Nanophotonics9, 1321–1340 (2020)..
Halir, R. et al. Subwavelength-grating metamaterial structures for silicon photonic devices.Proc. IEEE106, 2144–2157 (2018)..
Molesky, S. et al. Inverse design in nanophotonics.Nat. Photonics12, 659–670 (2018)..
Zheludev, N. I.&Kivshar, Y. S. From metamaterials to metadevices.Nat. Mater.11, 917–924 (2012)..
Soukoulis, C. M.&Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials.Nat. Photonics5, 523–530 (2011)..
Jahani, S.&Jacob, Z. All-dielectric metamaterials.Nat. Nanotechnol.11, 23–36 (2016)..
Chen, H. Y., Chan, C. T.&Sheng, P. Transformation optics and metamaterials.Nat. Mater.9, 387–396 (2010)..
Soukoulis, C. M.&Wegener, M. Optical metamaterials-more bulky and less lossy.Science330, 1633–1634 (2010)..
Yu, N. F. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction.Science334, 333–337 (2011)..
Yu, N. F.&Capasso, F. Flat optics with designer metasurfaces.Nat. Mater.13, 139–150 (2014)..
Sun, S. L. et al. Electromagnetic metasurfaces: physics and applications.Adv. Opt. Photonics11, 380–479 (2019)..
Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging.Science352, 1190–1194 (2016)..
Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source.Science368, 1487–1490 (2020)..
Chen, W. T., Zhu, A. Y.&Capasso, F. Flat optics with dispersion-engineered metasurfaces.Nat. Rev. Mater.5, 604–620 (2020)..
Huang, L. L., Zhang, S.&Zentgraf, T. Metasurface holography: from fundamentals to applications.Nanophotonics7, 1169–1190 (2018)..
Overvig, A. C. et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase.Light.: Sci. Appl.8, 92 (2019)..
Qian, C. et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention.Nat. Photonics14, 383–390 (2020)..
Hu, Y. Q. et al. 3D-integrated metasurfaces for full-colour holography.Light.: Sci. Appl.8, 86 (2019)..
Joo, W. J. et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch.Science370, 459–463 (2020)..
Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications.Nat. Nanotechnol.16, 69–76 (2021)..
Li, G. X., Zhang, S.&Zentgraf, T. Nonlinear photonic metasurfaces.Nat. Rev. Mater.2, 17010 (2017)..
Sain, B., Meier, C.&Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review.Adv. Photonics1, 024002 (2019)..
Guo, X. X. et al. Molding free-space light with guided wave-driven metasurfaces.Sci. Adv.6, eabb4142 (2020)..
Zhu, L., Yang, W. J.&Chang-Hasnain, C. Very high efficiency optical coupler for silicon nanophotonic waveguide and single mode optical fiber.Opt. Express25, 18462–18473 (2017)..
Arango, F. B., Kwadrin, A.&Koenderink, A. F. Plasmonic antennas hybridized with dielectric waveguides.ACS Nano6, 10156–10167 (2012)..
Benedikovic, D. et al. High-efficiency single etch step apodized surface grating coupler using subwavelength structure.Laser Photonics Rev.8, L93–L97 (2014)..
Benedikovic, D. et al. Subwavelength index engineered surface grating coupler with sub-decibel efficiency for 220-nm silicon-on-insulator waveguides.Opt. Express23, 22628–22635 (2015)..
Meng, Y. et al. Ultracompact graphene-assisted tunable waveguide couplers with high directivity and mode selectivity.Sci. Rep.8, 13362 (2018)..
Guo, Y. H. et al. Chip-integrated geometric metasurface as a novel platform for directional coupling and polarization sorting by spin-orbit interaction.IEEE J. Sel. Top. Quantum Electron.24, 4700107 (2018)..
Zhang, Y. B. et al. Spin-selective and wavelength-selective demultiplexing based on waveguide-integrated all-dielectric metasurfaces.Adv. Optical Mater.7, 1801273 (2019)..
Meng, Y. et al. Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization.Opt. Express27, 16425–16439 (2019)..
Meng,Y. et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface.Photonics Res.8, 564–576 (2020)..
Zhou, N. et al. Ultra-compact broadband polarization diversity orbital angular momentum generator with 3.6 × 3.6 µm2footprint.Sci. Adv.5, eaau9593 (2019)..
Cai, X. L. et al. Integrated compact optical vortex beam emitters.Science338, 363–366 (2012)..
Xie, Z. W. et al. Ultra-broadband on-chip twisted light emitter for optical communications.Light.: Sci. Appl.7, 18001 (2018)..
Guo, R. et al. Bidirectional waveguide coupling with plasmonic Fano nanoantennas.Appl. Phys. Lett.105, 053114 (2014)..
Guo, R. et al. Plasmonic fano nanoantennas for on-chip separation of wavelength-encoded optical signals.Nano Lett.15, 3324–3328 (2015)..
Guo, R. et al. High-bit rate ultra-compact light routing with mode-selective on-chip nanoantennas.Sci. Adv.3, e1700007 (2017)..
Li, Z. Y. et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces.Nat. Nanotechnol.12, 675–683 (2017)..
Wang, C. et al. Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides.Nat. Commun.8, 2098 (2017)..
Wang, Z. et al. On-chip wavefront shaping with dielectric metasurface.Nat. Commun.10, 3547 (2019)..
Jahani, S. et al. Controlling evanescent waves using silicon photonic all-dielectric metamaterials for dense integration.Nat. Commun.9, 1893 (2018)..
Mia, M. B. et al. Exceptional coupling in photonic anisotropic metamaterials for extremely low waveguide crosstalk.Optica7, 881–887 (2020)..
González-Andrade, D. et al. Ultra-broadband nanophotonic phase shifter based on subwavelength metamaterial waveguides.Photonics Res.8, 359–367 (2020)..
Estakhri, N. M., Edwards, B.&Engheta, N. Inverse-designed metastructures that solve equations.Science363, 1333–1338 (2019)..
Lu, J.&Vuckovic, J. Nanophotonic computational design.Opt. Express21, 13351–13367 (2013)..
Khoram, E. et al. Nanophotonic media for artificial neural inference.Photonics Res.7, 823–827 (2019)..
Hughes, T. W. et al. Wave physics as an analog recurrent neural network.Sci. Adv.3, eaay6946 (2019)..
Tang, Y. H. et al. Generative deep learning model for inverse design of integrated nanophotonic devices.Laser Photonics Rev.14, 2000287 (2020)..
Wang, K. Y. et al. Inverse design of digital nanophotonic devices using the adjoint method.Photonics Res.8, 528–533 (2020)..
Majumder, A. et al. Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials.Opt. Express25, 19721–19731 (2017)..
Shen, B., Polson, R.&Menon, R. Increasing the density of passive photonic integrated circuits via nanophotonic cloaking.Nat. Commun.7, 13126 (2016)..
Shen, B., Polson, R.&Menon, R. Metamaterial-waveguide bends with effective bend radius<λ0/2.Opt. Lett.40, 5750–5753 (2015)..
Shen, B., Polson, R.&Menon, R. Integrated digital metamaterials enables ultra-compact optical diodes.Opt. Express23, 10847–10855 (2015)..
Shen, B. et al. Integrated metamaterials for efficient and compact free-space-to-waveguide coupling.Opt. Express22, 27175–27182 (2014)..
Shen, B. et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 µm2footprint.Nat. Photonics9, 378–382 (2015)..
Liu, Y. J. et al. Arbitrarily routed mode-division multiplexed photonic circuits for dense integration.Nat. Commun.10, 3263 (2019)..
Sun, S. L. et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves.Nat. Mater.11, 426–431 (2012)..
Dong, S. H. et al. On-chip trans-dimensional plasmonic router.Nanophotonics9, 3357–3365 (2020)..
Gan, F. Y., Li, H. Y.&Chen, J. J. Tailoring the emission polarization with metasurface-based emitters designed on a plasmonic ridge waveguide.Nanoscale11, 7140–7148 (2019)..
Dong, S. H. et al. Highly efficient wave-front reshaping of surface waves with dielectric metawalls.Phys. Rev. Appl.9, 014032 (2018)..
Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo.Nat. Photonics12, 540–547 (2018)..
Principe, M. et al. Optical fiber meta-tips.Light. Sci. Appl.6, e16226 (2017)..
Consales, M. et al. Metasurface-enhanced lab-on-fiber biosensors.Laser Photonics Rev.14, 2000180 (2020)..
Liu, A. P. et al. On-chip generation and control of the vortex beam.Appl. Phys. Lett.108, 181103 (2016)..
Zhou, N. et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip.Opt. Lett.43, 3140–3143 (2018)..
Ha, Y. L. et al. Minimized two- and four-step varifocal lens based on silicon photonic integrated nanoapertures.Opt. Express28, 7943–7952 (2020)..
Huang, Z. Q., Marks, D. L.&Smith, D. R. Out-of-plane computer-generated multicolor waveguide holography.Optica6, 119–124 (2019)..
Ding, Y. M. et al. Guided-wave-driven photonic integrated metasurface holograms. InProceedings of 2020 Conference on Lasers and Electro-Optics(IEEE, 2020).
Wang, R. D. et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface.ACS Photonics6, 1774–1779 (2019)..
Ohana, D.&Levy, U. Mode conversion based on dielectric metamaterial in silicon.Opt. Express22, 27617–27631 (2014)..
Ohana, D. et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides.Nano Lett.16, 7956–7961 (2016)..
Xu, H. N.&Shi, Y. C. Subwavelength-grating-assisted silicon polarization rotator covering all optical communication bands.Opt. Express27, 5588–5597 (2019)..
Zhao, Y. et al. Ultra-compact silicon mode-order converters based on dielectric slots.Opt. Lett.45, 3797–3800 (2020)..
Yao, C. N. et al. Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint.Adv. Optical Mater.8, 2000529 (2020)..
Wang, H. W. et al. Compact silicon waveguide mode converter employing dielectric metasurface structure.Adv. Optical Mater.7, 1801191 (2019)..
Yao, C. H. et al. On-chip multi-mode manipulation via 2D refractive-index perturbation on a waveguide.Adv. Optical Mater.8, 2000996 (2020)..
Flueckiger, J. et al. Sub-wavelength grating for enhanced ring resonator biosensor.Opt. Express24, 15672–15686 (2016)..
Wang, Z. et al. High quality factor subwavelength grating waveguide micro-ring resonator based on trapezoidal silicon pillars.Opt. Lett.41, 3375–3378 (2016)..
He, L., Li, H.&Li, M. Optomechanical measurement of photon spin angular momentum and optical torque in integrated photonic devices.Sci. Adv.2, e1600485 (2016)..
Ding, Y. M. et al. On-chip integrated spectrometers based on metasurfaces on waveguides.Proceedings of 2020 Conference on Lasers and Electro-Optics(IEEE, 2020).
Sidiropoulos, T. P. H. et al. Compact optical antenna coupler for silicon photonics characterized by third-harmonic generation.ACS Photonics1, 912–916 (2014)..
Lin, Z. et al. Cavity-enhanced second-harmonic generation via nonlinear-overlap optimization.Optica3, 233–238 (2016)..
Xomalis, A. et al. Fibre-optic metadevice for all-optical signal modulation based on coherent absorption.Nat. Commun.9, 182 (2018)..
Xomalis, A. et al. Picosecond all-optical switching and dark pulse generation in a fibre-optic network using a plasmonic metamaterial absorber.Appl. Phys. Lett.113, 051103 (2018)..
Xomalis, A. et al. Cryptography in coherent optical information networks using dissipative metamaterial gates.APL Photonics4, 046102 (2019)..
Xiong, Y.&Xu, F. Multifunctional integration on optical fiber tips: challenges and opportunities.Adv. Photonics2, 064001 (2020)..
Yang, J. Y. et al. Photonic crystal fiber metalens.Nanophotonics8, 443–449 (2019)..
Wang, N. et al. Boosting light collection efficiency of optical fibers using metallic nanostructures.ACS Photonics6, 691–698 (2019)..
Kim, M.&Kim, S. High efficiency dielectric photonic crystal fiber metalens.Sci. Rep.10, 20898 (2020)..
Flannery, J. et al. Fabry-pérot cavity formed with dielectric metasurfaces in a hollow-core fiber.ACS Photonics5, 337–341 (2018)..
Wang, Q.&Wang, L. Lab-on-fiber: plasmonic nano-arrays for sensing.Nanoscale12, 7485–7499 (2020)..
Ricciardi, A. et al. Lab-on-fiber technology: a new vision for chemical and biological sensing.Analyst140, 8068–8079 (2015)..
Ricciardi, A. et al. Versatile optical fiber nanoprobes: from plasmonic biosensors to polarization-sensitive devices.ACS Photonics1, 69–78 (2014)..
Savinov, V.&Zheludev, N. I. High-quality metamaterial dispersive grating on the facet of an optical fiber.Appl. Phys. Lett.111, 091106 (2017)..
Chen, J. -h, Xiong, Y. -f, Xu, F.&Lu, Y. -q Silica optical fiber integrated with two-dimensional materials: towards opto-electro-mechanical technology.Light. Sci. Appl10, 78 (2021)..
Ehtaiba, J. M.&Gordon, R. Beaming light through a bow-tie nanoaperture at the tip of a single-mode optical fiber.Opt. Express27, 14112–14120 (2019)..
Jia, P. P. et al. Quasiperiodic nanohole arrays on optical fibers as plasmonic sensors: fabrication and sensitivity determination.ACS Sens.1, 1078–1083 (2016)..
Giovampaola, C. D.&Engheta, N. Digital metamaterials.Nat. Mater.13, 1115–1121 (2014)..
Lin, J. et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons.Science340, 331–334 (2013)..
Huang, L. L. et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity.Light. Sci. Appl.2, e70 (2013)..
Mühlenbernd, H. et al. Amplitude- and phase-controlled surface plasmon polariton excitation with metasurfaces.ACS Photonics3, 124–129 (2016)..
Pors, A. et al. Efficient unidirectional polarization-controlled excitation of surface plasmon polaritons.Light. Sci. Appl.3, e197 (2014)..
Sun, W. J. et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations.Light. Sci. Appl.5, e16003 (2016)..
Ding, F., Deshpande, R.&Bozhevolnyi, S. I. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence.Light. Sci. Appl.7, 17178 (2018)..
Meng, C. et al. Optical gap-surface plasmon metasurfaces for spin-controlled surface plasmon excitation and anomalous beam steering.ACS Photonics7, 1849–1856 (2020)..
Wang, Z. et al. Excite spoof surface plasmons with tailored wavefronts using high-efficiency terahertz metasurfaces.Adv. Sci.7, 2000982 (2020)..
Li, S. Q. et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces.Nanophotonics9, 3473–3481 (2020)..
Xiao, S. Y. et al. Flexible coherent control of plasmonic spin-hall effect.Nat. Commun.6, 8360 (2015)..
Lee, S. Y. et al. Plasmonic meta-slit: shaping and controlling near-field focus.Optica2, 6–13 (2015)..
Liu, Y. M.&Zhang, X. Metasurfaces for manipulating surface plasmons.Appl. Phys. Lett.103, 141101 (2013)..
High, A. A. et al. Visible-frequency hyperbolic metasurface.Nature522, 192–196 (2015)..
Ma, H. F. et al. Broadband and high-efficiency conversion from guided waves to spoof surface plasmon polaritons.Laser Photonics Rev.8, 146–151 (2014)..
Wang, D. P. et al. Planar spoof surface plasmon polariton antenna by using transmissive phase gradient metasurface.Ann. Der Phys.532, 2000008 (2020)..
Xu, J. J. et al. Efficient conversion of surface-plasmon-like modes to spatial radiated modes.Appl. Phys. Lett.106, 021102 (2015)..
Fan, Y. et al. Frequency scanning radiation by decoupling spoof surface plasmon polaritons via phase gradient metasurface.IEEE Trans. Antennas Propag.66, 203–208 (2018)..
Rahm, M. et al. Transformation-optical design of adaptive beam bends and beam expanders.Opt. Express16, 11555–11567 (2008)..
Fu, Y. Y., Xu, Y. D.&Chen, H. Y. Applications of gradient index metamaterials in waveguides.Sci. Rep.5, 18223 (2015)..
Tsakmakidis, K. L., Boardman, A. D.&Hess, O. 'Trapped rainbow' storage of light in metamaterials.Nature450, 397–401 (2007)..
Reza, A., Dignam, M. M.&Hughes, S. Can light be stopped in realistic metamaterials?Nature455, E10–E11 (2008)..
Gan, Q. Q. et al. Experimental verification of the rainbow trapping effect in adiabatic plasmonic gratings.Proc. Natl Acad. Sci. USA108, 5169–5173 (2011)..
Luo, J. et al. Realizing almost perfect bending waveguides with anisotropic epsilon-near-zero metamaterials.Appl. Phys. Lett.100, 221903 (2012)..
Gabrielli, L. H. et al. On-chip transformation optics for multimode waveguide bends.Nat. Commun.3, 1217 (2012)..
Ni, X. J. et al. Broadband light bending with plasmonic nanoantennas.Science335, 427 (2012)..
Shneidman, A. V. et al. All-polymer integrated optical resonators by roll-to-roll nanoimprint lithography.ACS Photonics5, 1839–1845 (2018)..
Sreenivasan, S. V. Nanoimprint lithography steppers for volume fabrication of leading-edge semiconductor integrated circuits.Microsyst. Nanoengineering3, 17075 (2017)..
Miller, D. A. B. Device requirements for optical interconnects to silicon chips.Proc. IEEE97, 1166–1185 (2009)..
Joannopoulos, J. D., Villeneuve, P. R.&Fan, S. H. Photonic crystals: putting a new twist on light.Nature386, 143–149 (1997)..
van der Ziel, J. P. Phase-matched harmonic generation in a laminar structure with wave propagation in the plane of the layers.Appl. Phys. Lett.26, 60–61 (1975)..
Cheben, P. et al. Subwavelength waveguide grating for mode conversion and light coupling in integrated optics.Opt. Express14, 4695–4702 (2006)..
Soller, B. J.&Hall, D. G. Energy transfer at optical frequencies to silicon-based waveguiding structures.J. Optical Soc. Am. A18, 2577–2584 (2001)..
Quidant, R. et al. Tailoring the transmittance of integrated optical waveguides with short metallic nanoparticle chains.Phys. Rev. B69, 085407 (2004)..
Overvig, A. C., Malek, S. C.&Yu, N. F. Multifunctional nonlocal metasurfaces.Phys. Rev. Lett.125, 017402 (2020)..
Overvig, A. C. et al. Selection rules for quasibound states in the continuum.Phys. Rev. B102, 035434 (2020)..
Jensen, J. S.&Sigmund, O. Topology optimization for nano-photonics.Laser Photonics Rev.5, 308–321 (2011)..
Ma, W. et al. Deep learning for the design of photonic structures.Nat. Photonics15, 77–90 (2021)..
Miller, D. A. B. All linear optical devices are mode converters.Opt. Express20, 23985–23993 (2012)..
Meinzer, N., Barnes, W. L.&Hooper, I. R. Plasmonic meta-atoms and metasurfaces.Nat. Photonics8, 889–898 (2014)..
Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat. Nanotechnol.10, 937–943 (2015)..
Mueller, J. P. B. et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization.Phys. Rev. Lett.118, 113901 (2017)..
Su, L. et al. Nanophotonic inverse design with SPINS: software architecture and practical considerations.Appl. Phys. Rev.7, 011407 (2020)..
Chi, J. et al. High-performance mid-infrared frequency upconversion in lithium niobate waveguide patterned with metasurfaces.J. Phys. D Appl. Phys.52, 035101 (2019)..
Fang, B. et al. Second-harmonic generation and manipulation in lithium niobate slab waveguides by grating metasurfaces.Photonics Res.8, 1296–1300 (2020)..
Novotny, L.&van Hulst, N. Antennas for light.Nat. Photonics5, 83–90 (2011)..
Purcell, E. M.&Morin, D. J.Electricity and Magnetism3rd edn. (Cambridge University Press, 2013).
Vercruysse, D. et al. Single asymmetric plasmonic antenna as a directional coupler to a dielectric waveguide.ACS Photonics4, 1398–1402 (2017)..
Kosako, T., Kadoya, Y.&Hofmann, H. F. Directional control of light by a nano-optical Yagi-Uda antenna.Nat. Photonics4, 312–315 (2010)..
Kullock, R. et al. Electrically-driven Yagi-Uda antennas for light.Nat. Commun.11, 115 (2020)..
Badawy, T.&Bertuch, T. Slotted waveguide antenna integrated with printed Yagi-Uda director array.Proceedings of the 13th European Conference on Antennas and Propagation1–5 (IEEE, 2019).
Ma, L. et al. Yagi-Uda optical antenna array collimated laser based on surface plasmons.Opt. Commun.368, 197–201 (2016)..
Kim, J. et al. Directional radiation of babinet-inverted optical nanoantenna integrated with plasmonic waveguide.Sci. Rep.5, 11832 (2015)..
Février, M. et al. Giant coupling effect between metal nanoparticle chain and optical waveguide.Nano Lett.12, 1032–1037 (2012)..
Chen, B. G. et al. Hybrid photon-plasmon coupling and ultrafast control of nanoantennas on a silicon photonic chip.Nano Lett.18, 610–617 (2018)..
Magno, G. et al. Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems.Sci. Rep.7, 7228 (2017)..
Bruck, R.&Muskens, O. L. Plasmonic nanoantennas as integrated coherent perfect absorbers on SOI waveguides for modulators and all-optical switches.Opt. Express21, 27652–27661 (2013)..
Chen, C. et al. Waveguide-integrated compact plasmonic resonators for on-chip mid-infrared laser spectroscopy.Nano Lett.18, 7601–7608 (2018)..
Chen, C., Oh, S. H.&Li, M. Coupled-mode theory for plasmonic resonators integrated with silicon waveguides towards mid-infrared spectroscopic sensing.Opt. Express28, 2020–2036 (2020)..
Peyskens, F. et al. Surface enhanced Raman spectroscopy using a single mode nanophotonic-plasmonic platform.ACS Photonics3, 102–108 (2016)..
Beck, F. J.&Resonant, S. P. P. modes supported by discrete metal nanoparticles on high-index substrates.Opt. Express19, A146–A156 (2011)..
Lupu, A. et al. Metal-dielectric metamaterials for guided wave silicon photonics.Opt. Express19, 24746–24761 (2011)..
Smith, D. R. et al. Analysis of a waveguide-fed metasurface antenna.Phys. Rev. Appl.8, 054048 (2017)..
Poulton, C. V. et al. Coherent solid-state LIDAR with silicon photonic optical phased arrays.Opt. Lett.42, 4091–4094 (2017)..
Strain, M. J. et al. Fast electrical switching of orbital angular momentum modes using ultra-compact integrated vortex emitters.Nat. Commun.5, 4856 (2014)..
Shao, Z. K. et al. On-chip switchable radially and azimuthally polarized vortex beam generation.Opt. Lett.43, 1263–1266 (2018)..
Wu, C. M. et al. Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network.Nat. Commun.12, 96 (2021)..
Cheng, Z. et al. Sub-wavelength grating assisted mode order converter on the SOI substrate.Opt. Express27, 34434–34441 (2019)..
Huang, C. C.&Huang, C. C. Theoretical analysis of mode conversion by refractive-index perturbation based on a single tilted slot on a silicon waveguide.Opt. Express28, 18986–18999 (2020)..
Carletti, L. et al. Second harmonic generation in monolithic lithium niobate metasurfaces.Opt. Express27, 33391–33398 (2019)..
Ma, J. J. et al. Nonlinear lithium niobate metasurfaces for second harmonic generation.Laser Photonics Rev.15, 2000521 (2021)..
Sideris, S.&Ellenbogen, T. Terahertz generation in parallel plate waveguides activated by nonlinear metasurfaces.Opt. Lett.44, 3590–3593 (2019)..
Kim, S. et al. High-harmonic generation by resonant plasmon field enhancement.Nature453, 757–760 (2008)..
Escuti, M. J., Kim, J.&Kudenov, M. W. Controlling light with geometric-phase holograms.Opt. Photonics N.27, 22–29 (2016)..
Pancharatnam, S. Generalized theory of interference, and its applications.Proc. Indian Acad. Sci. Sect. A44, 247–262 (1956)..
Chen, X. Z. et al. Dual-polarity plasmonic metalens for visible light.Nat. Commun.3, 1198 (2012)..
Meng, Y. et al. Guided mode meta-optics: metasurface-dressed nanophotonic waveguides for arbitrary designer mode couplers and on-chip OAM emitters with configurable topological charge.arXiv Prepr.2106, 03559 (2021)..
Nadovich, C. T. et al. Focused apodized forked grating coupler.Opt. Express25, 26861–26874 (2017)..
Shen, Y. J. et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities.Light.: Sci. Appl.8, 90 (2019)..
Yang, R. et al. On-chip metalenses based on one-dimensional gradient trench in the broadband visible.Opt. Lett.45, 5640–5643 (2020)..
Liao, K. et al. AI-assisted on-chip nanophotonic convolver based on silicon metasurface.Nanophotonics9, 3315–3322 (2020)..
Fang, Z. R. et al. 1D self-healing beams in integrated silicon photonics.arXiv Prepr.2103, 12254 (2021)..
Neira, A. D. et al. Ultrafast all-optical modulation with hyperbolic metamaterial integrated in Si photonic circuitry.Opt. Express22, 10987–10994 (2014)..
Rodríguez-Fortuño, F. J., Espinosa-Soria, A.&Martínez, A. Exploiting metamaterials, plasmonics and nanoantennas concepts in silicon photonics.J. Opt.18, 123001 (2016)..
Halir, R. et al. Waveguide sub-wavelength structures: a review of principles and applications.Laser Photonics Rev.9, 25–49 (2015)..
Wang, Y. et al. Ultra-compact sub-wavelength grating polarization splitter-rotator for silicon-on-insulator platform.IEEE Photonics J.8, 7805709 (2016)..
González-Andrade, D. et al. Ultra-broadband mode converter and multiplexer based on sub-wavelength structures.IEEE Photonics J.10, 2201010 (2018)..
Xu, H. N., Dai, D. X.&Shi, Y. C. Ultra-broadband and ultra-compact on-chip silicon polarization beam splitter by using hetero-anisotropic metamaterials.Laser Photonics Rev.13, 1800349 (2019)..
Halir, R. et al. Ultra-broadband nanophotonic beamsplitter using an anisotropic sub-wavelength metamaterial.Laser Photonics Rev.10, 1039–1046 (2016)..
Xu, Y.&Xiao, J. B. Ultracompact and high efficient silicon-based polarization splitter-rotator using a partially-etched subwavelength grating coupler.Sci. Rep.6, 27949 (2016)..
Zhang, Y. et al. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations.Opt. Express24, 6586–6593 (2016)..
Guan, X. W. et al. Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide.Opt. Lett.39, 4514–4517 (2014)..
Barwicz, T. et al. Integrated metamaterial interfaces for self-aligned fiber-to-chip coupling in volume manufacturing.IEEE J. Sel. Top. Quantum Electron.25, 4700313 (2019)..
Cheben, P. et al. Broadband polarization independent nanophotonic coupler for silicon waveguides with ultra-high efficiency.Opt. Express23, 22553–22563 (2015)..
Xu, H. N., Dai, D. X.&Shi, Y. C. Anisotropic metamaterial-assisted all-silicon polarizer with 415-nm bandwidth.Photonics Res.7, 1432–1439 (2019)..
Levy, U. et al. Inhomogenous dielectric metamaterials with space-variant polarizability.Phys. Rev. Lett.98, 243901 (2007)..
Hassan, K. et al. Integrated photonic guided metalens based on a pseudo-graded index distribution.Sci. Rep.10, 1123 (2020)..
Li, B. R., He, Y. R.&He, S. L. Investigation of light trapping effect in hyperbolic metamaterial slow-light waveguides.Appl. Phys. Express8, 082601 (2015)..
Pendry, J. B. Negative refraction makes a perfect lens.Phys. Rev. Lett.85, 3966 (2000)..
Tichit, P. H., Burokur, S. N.&de Lustrac, A. Waveguide taper engineering using coordinate transformation technology.Opt. Express18, 767–772 (2010)..
Zhang, K. et al. Arbitrary waveguide connector based on embedded optical transformation.Opt. Express18, 17273–17279 (2010)..
Ozgun, O.&Kuzuoglu, M. Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions.IEEE Microw. Wirel. Compon. Lett.17, 754–756 (2007)..
Viaene, S. et al. Mitigating optical singularities in coordinate-based metamaterial waveguides.Phys. Rev. B95, 155412 (2017)..
Fu, Y. Y., Xu, Y. D.&Chen, H. Y. Additional modes in a waveguide system of zero-index-metamaterials with defects.Sci. Rep.4, 6428 (2014)..
Ding, W. Q. et al. Arbitrary waveguide bends using isotropic and homogeneous metamaterial.Appl. Phys. Lett.96, 041102 (2010)..
Reshef, O. et al. Direct observation of phase-free propagation in a silicon waveguide.ACS Photonics4, 2385–2389 (2017)..
Ji, W. J., Luo, J.&Lai, Y. Extremely anisotropic epsilon-near-zero media in waveguide metamaterials.Opt. Express27, 19463–19473 (2019)..
Edwards, B. et al. Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide.Phys. Rev. Lett.100, 033903 (2008)..
Zhang, B. et al. THz band-stop filter using metamaterials surfaced on LiNbO3sub-wavelength slab waveguide.Opt. Express23, 16042–16051 (2015)..
Hamouche, H.&Shabat, M. M. Enhanced absorption in silicon metamaterials waveguide structure.Appl. Phys. A122, 685 (2016)..
Tang, T. T., Li, C. Y.&Luo, L. Enhanced spin hall effect of tunneling light in hyperbolic metamaterial waveguide.Sci. Rep.6, 30762 (2016)..
Xu, Y. D. et al. Broadband asymmetric waveguiding of light without polarization limitations.Nat. Commun.4, 2561 (2013)..
Wang, H. X. et al. Broadband mode conversion via gradient index metamaterials.Sci. Rep.6, 24529 (2016)..
Arute, F. et al. Quantum supremacy using a programmable superconducting processor.Nature574, 505–510 (2019)..
Mirhosseini, M. et al. Superconducting metamaterials for waveguide quantum electrodynamics.Nat. Commun.9, 3706 (2018)..
Rakhmanov, A. L. et al. Quantum metamaterials: electromagnetic waves in a Josephson qubit line.Phys. Rev. B77, 144507 (2008)..
Lodahl, P., Mahmoodian, S.&Stobbe, S. Interfacing single photons and single quantum dots with photonic nanostructures.Rev. Mod. Phys.87, 347–400 (2015)..
Kostovski, G., Stoddart, P. R.&Mitchell, A. The optical fiber tip: An inherently light-coupled microscopic platform for micro- and nanotechnologies.Adv. Mater.26, 3798–3820 (2014)..
Yu, N. F.&Capasso, F. Optical metasurfaces and prospect of their applications including fiber optics.J. Lightwave Technol.33, 2344–2358 (2015)..
Tong, L. M. et al. Optical microfibers and nanofibers: a tutorial.Opt. Commun.285, 4641–4647 (2012)..
Cusano, A. et al.Lab-on-fiber technology(Springer, 2015).
Vaiano, P. et al. Lab on fiber technology for biological sensing applications.Laser Photonics Rev.10, 922–961 (2016)..
Galeotti, F., Pisco, M.&Cusano, A. Self-assembly on optical fibers: a powerful nanofabrication tool for next generation "lab-on-fiber" optrodes.Nanoscale10, 22673–22700 (2018)..
Pisco, M.&Cusano, A. Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms.Sensors20, 4705 (2020)..
Plidschun, M. et al. Ultrahigh numerical aperture meta-fibre for flexible optical trapping.Light.: Sci. Appl.10, 57 (2021)..
Liu, Y. X. et al. Compact microfiber Bragg gratings with high-index contrast.Opt. Lett.36, 3115–3117 (2011)..
Ding, M., Zervas, M. N.&Brambilla, G. A compact broadband microfiber Bragg grating.Opt. Express19, 15621–15626 (2011)..
Petersen, J., Volz, J.&Rauschenbeutel, A. Chiral nanophotonic waveguide interface based on spin-orbit interaction of light.Science346, 67–71 (2014)..
Liu, T. M. et al. Polarization conversion based on an all-dielectric metasurface for optical fiber applications.J. Phys. D: Appl. Phys.50, 334001 (2017)..
Smith, E. J. et al. Combined surface Plasmon and classical waveguiding through metamaterial fiber design.Nano Lett.10, 1–5 (2010)..
Hasan, M. M. et al. Robust optical fiber using single negative metamaterial cladding.IEEE Photonics Technol. Lett.25, 1043–1046 (2013)..
Zeisberger, M., Tuniz, A.&Schmidt, M. A. Analytic model for the complex effective index dispersion of metamaterial-cladding large-area hollow core fibers.Opt. Express24, 20515–20528 (2016)..
Li, H. S. et al. Flexible single-mode hollow-core terahertz fiber with metamaterial cladding.Optica3, 941–947 (2016)..
Lai, C. C. et al. Architecting a nonlinear hybrid crystal-glass metamaterial fiber for all-optical photonic integration.J. Mater. Chem. C.6, 1659–1669 (2018)..
Minn, K. et al. Excitation of epsilon-near-zero resonance in ultra-thin indium tin oxide shell embedded nanostructured optical fiber.Sci. Rep.8, 2342 (2018)..
Tuniz, A. et al. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances.Nat. Commun.4, 2706 (2013)..
Hayashi, J. G. et al. Fabrication of soft-glass-based wire array metamaterial fibers for applications at infrared frequencies.J. Lightwave Technol.37, 5001–5009 (2019)..
Chan, E. A. et al. Plasmono-atomic interactions on a fiber tip.Appl. Phys. Lett.116, 183101 (2020)..
Principe, M. et al. Evaluation of fiber-optic phase-gradient meta-tips for sensing applications.Nanomaterials Nanotechnol.9, 1–9 (2019)..
Dhawan, A., Gerhold, M. D.&Muth, J. F. Plasmonic structures based on subwavelength apertures for chemical and biological sensing applications.IEEE Sens. J.8, 942–950 (2008)..
Lin, Y. B., Guo, J. P.&Lindquist, R. G. Demonstration of an ultra-wideband optical fiber inline polarizer with metal nano-grid on the fiber tip.Opt. Express17, 17849–17854 (2009)..
Arce, C. L. et al. Silicon-on-insulator microring resonator sensor integrated on an optical fiber facet.IEEE Photonics Technol. Lett.23, 890–892 (2011)..
Lin, Y. B., Zou, Y.&Lindquist, R. G. A reflection-based localized surface plasmon resonance fiber-optic probe for biochemical sensing.Biomed. Opt. Express2, 478–484 (2011)..
Kim, H. T.&Yu, M. Lab-on-fiber nanoprobe with dual high-Q Rayleigh anomaly-surface Plasmon Polariton resonances for multiparameter sensing.Sci. Rep.9, 1922 (2019)..
Jeong, H. H. et al.Real-timelabel-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor.Biosens. Bioelectron.39, 346–351 (2013)..
Kang, S. H. et al. Subwavelength plasmonic lens patterned on a composite optical fiber facet for quasi-one-dimensional Bessel beam generation.Appl. Phys. Lett.98, 241103 (2011)..
Zhao, Y. F. et al. Meta-facet fiber for twisting ultra-broadband light with high phase purity.Appl. Phys. Lett.113, 061103 (2018)..
Wang, X. et al. Metasurface-on-fiber enabled orbital angular momentum modes in conventional optical fibers. InProceedings of 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications(IEEE, 2014).
Du, J. et al. Design and fabrication of metasurface on conventional optical fiber facet for linearly polarized mode (LP11) generation at visible light wavelength. InProceedings of 2016 Conference on Lasers and Electro-Optics(IEEE, 2016)..
Rauch, J. Y. et al. Smallest microhouse in the world, assembled on the facet of an optical fiber by origami and welded in the µrobotex nanofactory.J. Vac. Sci. Technol. A36, 041601 (2018)..
Kou, J. L. et al. Demonstration of a compact temperature sensor based on first-order Bragg grating in a tapered fiber probe.Opt. Express19, 18452–18457 (2011)..
Feng, J. et al. An optical fiber tip micrograting thermometer.IEEE Photonics J.3, 810–814 (2011)..
Nayak, K. P. et al. Cavity formation on an optical nanofiber using focused ion beam milling technique.Opt. Express19, 14040–14050 (2011)..
Nguyen-Dang, T. et al. Controlled sub-micrometer hierarchical textures engineered in polymeric fibers and microchannels via thermal drawing.Adv. Funct. Mater.27, 1605935 (2017)..
Mu, J. et al. Sheath-run artificial muscles.Science365, 150–155 (2019)..
Wang, Z. et al. Designer patterned functional fibers via direct imprinting in thermal drawing.Nat. Commun.11, 3842 (2020)..
Abouraddy, A. F. et al. Towards multimaterial multifunctional fibres that see, hear, sense and communicate.Nat. Mater.6, 336–347 (2007)..
Xue, S. C. et al. Analysis of capillary instability in metamaterials fabrication using fiber drawing technology.J. Lightwave Technol.35, 2167–2174 (2017)..
Loke, G. et al. Recent progress and perspectives of thermally drawn multimaterial fiber electronics.Adv. Mater.32, 1904911 (2020)..
Fleming, S. et al. Tunable metamaterials fabricated by fiber drawing.J. Optical Soc. Am. B34, D81–D85 (2017)..
Wang, A. N. et al. Fiber metamaterials with negative magnetic permeability in the terahertz.Optical Mater. Express1, 115–120 (2011)..
Yan, M.&Mortensen, N. A. Hollow-core infrared fiber incorporating metal-wire metamaterial.Opt. Express17, 14851–14864 (2009)..
Skorobogatiy, M.&Dupuis, A. Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance.Appl. Phys. Lett.90, 113514 (2007)..
Pratap, D. et al. Anisotropic metamaterial optical fibers.Opt. Express23, 9074–9085 (2015)..
Townsend, S., Zhou, S. W.&Li, Q. Design of fiber metamaterials with negative refractive index in the infrared.Opt. Express23, 18236–18242 (2015)..
Hassani, A., Dupuis, A.&Skorobogatiy, M. Low loss porous terahertz fibers containing multiple subwavelength holes.Appl. Phys. Lett.92, 071101 (2008)..
Atakaramians, S. et al. Fiber-drawn metamaterial for THz waveguiding and imaging.J. Infrared Millim. Terahertz Waves38, 1162–1178 (2017)..
Bhardwaj, A., Srivastava, K. V.&Ramakrishna, S. A. Enhanced coupling of light from subwavelength sources into a hyperbolic metamaterial fiber.J. Lightwave Technol.37, 3064–3072 (2019)..
Atakaramians, S. et al. Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials.J. Optical Soc. Am. B30, 851–867 (2013)..
Sakr, H. et al. Hollow core optical fibres with comparable attenuation to silica fibres between 600 and 1100 nm.Nat. Commun.11, 6030 (2020)..
Yang, Y. M. et al. High-harmonic generation from an epsilon-near-zero material.Nat. Phys.15, 1022–1026 (2019)..
Hayashi, J. G. et al. Towards subdiffraction imaging with wire array metamaterial hyperlenses at MIR frequencies.Opt. Express27, 21420–21434 (2019)..
Kanamori, Y., Okochi, M.&Hane, K. Fabrication of antireflection subwavelength gratings at the tips of optical fibers using UV nanoimprint lithography.Opt. Express21, 322–328 (2013)..
Calafiore, G. et al. Campanile near-field probes fabricated by nanoimprint lithography on the facet of an optical fiber.Sci. Rep.7, 1651 (2017)..
Yang, X. et al. Nanopillar array on a fiber facet for highly sensitive surface-enhanced Raman scattering.Opt. Express20, 24819–24826 (2012)..
Petrušis, A. et al. The align-and-shine technique for series production of photolithography patterns on optical fibres.J. Micromech. Microeng.19, 047001 (2009)..
Zhou, C. et al. All-dielectric fiber meta-tip enabling vortex generation and beam collimation for optical interconnect.Laser Photonics Rev.15, 2000581 (2021)..
Reader-Harris, P.&Falco, A. D. Nanoplasmonic filters for hollow core photonic crystal fibers.ACS Photonics1, 985–989 (2014)..
Juhl, M., Mueller, J. P. B.&Leosson, K. Metasurface polarimeter on optical fiber facet by nano-transfer to UV-curable hybrid polymer.IEEE J. Sel. Top. Quantum Electron.25, 4500107 (2019)..
Yu, J. et al. All-fiber focused beam generator integrated on an optical fiber tip.Appl. Phys. Lett.116, 241102 (2020)..
Kostovski, G. et al. Sub-15 nm optical fiber nanoimprint lithography: a parallel, self-aligned and portable approach.Adv. Mater.23, 531–535 (2011)..
Vanmol, K. et al. 3D direct laser writing of microstructured optical fiber tapers on single-mode fibers for mode-field conversion.Opt. Express28, 36147–36158 (2020)..
Xie, Z. W. et al. Integrated (de)multiplexer for orbital angular momentum fiber communication.Photonics Res.6, 743–749 (2018)..
Kostovski, G. et al. Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing.Biosens. Bioelectron.24, 1531–1535 (2009)..
Lipomi, D. J. et al. Patterning the tips of optical fibers with metallic nanostructures using nanoskiving.Nano Lett.11, 632–636 (2011)..
Smythe, E. J. et al. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces.ACS Nano3, 59–65 (2009)..
Smythe, E. J. et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection.Nano Lett.9, 1132–1138 (2009)..
Shambat, G. et al. Optical fiber tips functionalized with semiconductor photonic crystal cavities.Appl. Phys. Lett.99, 191102 (2011)..
Wang, B. W. et al. Photonic crystal cavity on optical fiber facet for refractive index sensing.Opt. Lett.37, 833–835 (2012)..
Jia, P. P.&Yang, J. Integration of large-area metallic nanohole arrays with multimode optical fibers for surface plasmon resonance sensing.Appl. Phys. Lett.102, 243107 (2013)..
Jia, P. P.&Yang, J. A plasmonic optical fiber patterned by template transfer as a high-performance flexible nanoprobe for real-time biosensing.Nanoscale6, 8836–8843 (2014)..
Kawata, S. et al. Finer features for functional microdevices.Nature412, 697–698 (2001)..
Ma, Z. C. et al. Femtosecond laser programmed artificial musculoskeletal systems.Nat. Commun.11, 4536 (2020)..
Saha, S. K. et al. Scalable submicrometer additive manufacturing.Science366, 105–109 (2019)..
Gissibl, T. et al. Two-photon direct laser writing of ultracompact multi-lens objectives.Nat. Photonics10, 554–560 (2016)..
Weber, K. et al. Single mode fiber based delivery of OAM light by 3D direct laser writing.Opt. Express25, 19672–19679 (2017)..
Thompson, A. J., Power, M.&Yang, G. Z. Micro-scale fiber-optic force sensor fabricated using direct laser writing and calibrated using machine learning.Opt. Express26, 14186–14200 (2018)..
Rechtsman, M. C. et al. Photonic Floquet topologicalinsulators.Nature496, 196–200 (2013)..
Chen, Y. et al. Vector vortex beam emitter embedded in a photonic chip.Phys. Rev. Lett.124, 153601 (2020)..
Scheerlinck, S. et al. Flexible metal grating based optical fiber probe for photonic integrated circuits.Appl. Phys. Lett.92, 031104 (2008)..
Calafiore, G. et al. Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.Nanotechnology27, 375301 (2016)..
Morales-Delgado, E. E. et al. Three-dimensional microfabrication through a multimode optical fiber.Opt. Express25, 7031–7045 (2017)..
Consales, M. et al. Lab-on-fiber technology: toward multifunctional optical nanoprobes.ACS Nano6, 3163–3170 (2012)..
Lin, Y. B. et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing.Sensors10, 9397–9406 (2010)..
Sasaki, M. et al. Direct photolithography on optical fiber end.Japanese J. Appl. Phys.41, 4350–4355 (2002)..
Lu, Y. et al. Three-dimensional photolithography technology for a fiber substrate using a microfabricated exposure module.J. Micromech. Microeng.20, 125013 (2010)..
Lee, Y. et al. Selectively micro-patternable fibers via in-fiber photolithography.ACS Cent. Sci.6, 2319–2325 (2020)..
Yan, W. et al. Advanced multimaterial electronic and optoelectronic fibers and textiles.Adv. Mater.31, 1802348 (2019)..
Alchalaby, A. et al. Investigation of plateau-Rayleigh instability in drawn metal-polymer composite fibers for metamaterials fabrication.J. Lightwave Technol.34, 2198–2205 (2016)..
Yaman, M. et al. Arrays of indefinitely long uniform nanowires and nanotubes.Nat. Mater.10, 494–501 (2011)..
Yan, W. et al. Structured nanoscale metallic glass fibres with extreme aspect ratios.Nat. Nanotechnol.15, 875–882 (2020)..
Danckwerts, M.&Novotny, L. Optical frequency mixing at coupled gold nanoparticles.Phys. Rev. Lett.98, 026104 (2007)..
Maier, S. A. Plasmonics: the promise of highly integrated optical devices.IEEE J. Sel. Top. Quantum Electron.12, 1671–1677 (2006)..
Ebbesen, T. W., Genet, C.&Bozhevolnyi, S. I. Surface-plasmon circuitry.Phys. Today61, 44–50 (2008)..
Fang, Y. R.&Sun, M. T. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits.Light.: Sci. Appl.4, e294 (2015)..
Anker, J. N. et al. Biosensing with plasmonic nanosensors. InNanoscience and Technology(ed. Rodgers, P. ) 308–319 (World Scientific, 2009).
Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS).Phys. Rev. Lett.78, 1667–1670 (1997)..
Pendry, J. B. Mimicking surface plasmons with structured surfaces.Science305, 847–848 (2004)..
Maier, S. A. et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires.Phys. Rev. Lett.97, 176805 (2006)..
Zayats, A. V., Smolyaninov, I. I.&Maradudin, A. A. Nano-optics of surface plasmon polaritons.Phys. Rep.408, 131–314 (2005)..
Raether, H.Surface Plasmons on Smooth and Rough Surfaces and on Gratings(Springer, 1988).
Zia, R. et al. Plasmonics: the next chip-scale technology.Mater. Today9, 20–27 (2006)..
Wang, J. F. et al. High-efficiency spoof plasmon polariton coupler mediated by gradient metasurfaces.Appl. Phys. Lett.101, 201104 (2012)..
Duan, J. W. et al. High-efficiency chirality-modulated spoof surface plasmon meta-coupler.Sci. Rep.7, 1354 (2017)..
Yin, L. Z. et al. High-efficiency terahertz spin-decoupled meta-coupler for spoof surface plasmon excitation and beam steering.Opt. Express27, 18928–18939 (2019)..
Tanemura, T. et al. Multiple-wavelength focusing of surface plasmons with a nonperiodic nanoslit coupler.Nano Lett.11, 2693–2698 (2011)..
Xu, Q. et al. Polarization-controlled surface plasmon holography.Laser Photonics Rev.11, 1600212 (2017)..
Zhang, X. Q. et al. Anomalous surface wave launching by handedness phase control.Adv. Mater.27, 7123–7129 (2015)..
Bozhevolnyi, S. I. et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.Nature440, 508–511 (2006)..
Oulton, R. F. et al. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation.Nat. Photonics2, 496–500 (2008)..
Stockman, M. I. Nanofocusing of optical energy in tapered plasmonic waveguides.Phys. Rev. Lett.93, 137404 (2004)..
Zhang, Y. et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide.Photonics Res.6, 18–23 (2018)..
Kumar, G. et al. Terahertz surface plasmon waveguide based on a one-dimensional array of silicon pillars.N. J. Phys.15, 085031 (2013)..
Shen, X. P. et al. Conformal surface plasmons propagating on ultrathin and flexible films.Proc. Natl Acad. Sci. USA110, 40–45 (2013)..
Wei, H. et al. Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks.Nano Lett.11, 471–475 (2011)..
Wei, H. et al. Cascaded logic gates in nanophotonic plasmon networks.Nat. Commun.2, 387 (2011)..
Fu, Y. L. et al. All-optical logic gates based on nanoscale plasmonic slot waveguides.Nano Lett.12, 5784–5790 (2012)..
Li, Y. et al. Transversely divergent second harmonic generation by surface plasmon polaritons on single metallic nanowires.Nano Lett.17, 7803–7808 (2017)..
Shi, J. J. et al. Efficient second harmonic generation in a hybrid plasmonic waveguide by mode interactions.Nano Lett.19, 3838–3845 (2019)..
Lu, F. F. et al. Efficient second-harmonic generation in nonlinear plasmonic waveguide.Opt. Lett.36, 3371–3373 (2011)..
Guo, Q. B. et al. Routing a chiral Raman signal based on spin-orbit interaction of light.Phys. Rev. Lett.123, 183903 (2019)..
Hohenau, A. et al. Dielectric optical elements for surface plasmons.Opt. Lett.30, 893–895 (2005)..
Ditlbacher, H. et al. Two-dimensional optics with surface Plasmon polaritons.Appl. Phys. Lett.81, 1762–1764 (2002)..
Li, L. et al. Plasmonic airy beam generated by in-plane diffraction.Phys. Rev. Lett.107, 126804 (2011)..
Zhao, C. L. et al. A reconfigurable plasmofluidic lens.Nat. Commun.4, 2305 (2013)..
Zentgraf, T. et al. Plasmonic Luneburg and Eaton lenses.Nat. Nanotechnol.6, 151–155 (2011)..
Chen, Y. G., Chen, Y. H.&Li, Z. Y. Direct method to control surface plasmon polaritons on metal surfaces.Opt. Lett.39, 339–342 (2014)..
Chen, Y. G., Wang, Y. H.&Li, Z. Y. Complicated wavefront shaping of surface Plasmon polaritons on metal surface by holographic groove patterns.Plasmonics9, 1057–1062 (2014)..
Dong, S. H. et al. Dielectric meta-walls for surface plasmon focusing and Bessel beam generation.Europhys. Lett.122, 67002 (2018)..
Guan, F. X. et al. Scatterings from surface plasmons to propagating waves at plasmonic discontinuities.Sci. Bull.64, 802–807 (2019)..
Lezec, H. J. et al. Beaming light from a subwavelength aperture.Science297, 820–822 (2002)..
Dolev, I., Epstein, I.&Arie, A. Surface-plasmon holographic beam shaping.Phys. Rev. Lett.109, 203903 (2012)..
Tang, X. M. et al. Converting surface plasmon to spatial airy beam by graded grating on metal surface.Opt. Lett.38, 1733–1735 (2013)..
Baron, A. et al. Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons.Nano Lett.11, 4207–4212 (2011)..
Li, L. et al. Plasmonic polarization generator in well-routed beaming.Light.: Sci. Appl.4, e330 (2015)..
Hughes, T. W. et al. Adjoint method and inverse design for nonlinear nanophotonic devices.ACS Photonics5, 4781–4787 (2018)..
Lalau-Keraly, C. M. et al. Adjoint shape optimization applied to electromagnetic design.Opt. Express21, 21693–21701 (2013)..
Piggott, A. Y. et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer.Nat. Photonics9, 374–377 (2015)..
Johnson, S. G. et al. Perturbation theory for Maxwell's equations with shifting material boundaries.Phys. Rev. E65, 066611 (2002)..
Lu, L. L.Z. et al. Inverse-designed single-step-etched colorless 3 dB couplers based on RIE-lag-insensitive PhC-like subwavelength structures.Opt. Lett.41, 5051–5054 (2016)..
Bendsoe, M. P.&Sigmund, O.Topology Optimization: Theory, Methods, and Applications(Springer, 2013).
Haslinger, J.&Mäkinen, R. A. E.Introduction to Shape Optimization: Theory, Approximation, and Computation(SIAM, 2003).
Borel, P. I. et al. Topology optimization and fabrication of photonic crystal structures.Opt. Express12, 1996–2001 (2004)..
Jensen, J. S.&Sigmund, O. Systematic design of photonic crystal structures using topology optimization: low-loss waveguide bends.Appl. Phys. Lett.84, 2022–2024 (2004)..
Tsuji, Y.&Hirayama, K. Design of optical circuit devices using topology optimization method with function-expansion-based refractive index distribution.IEEE Photonics Technol. Lett.20, 982–984 (2008)..
Frandsen, L. H.&Sigmund, O. Inverse design engineering of all-silicon polarization beam splitters. InProceedings of SPIE 9756, Photonic and Phononic Properties of Engineered Nanostructures VI(SPIE, 2016).
Frellsen, L. F. et al. Topology optimized mode multiplexing in silicon-on-insulator photonic wire waveguides.Opt. Express24, 16866–16873 (2016)..
Augenstein, Y.&Rockstuhl, C. Inverse design of nanophotonic devices with structural integrity.ACS Photonics7, 2190–2196 (2020)..
Sell, D. et al. Large-angle, multifunctional metagratings based on freeform multimode geometries.Nano Lett.17, 3752–3757 (2017)..
Sell, D. et al. Ultra-high-efficiency anomalous refraction with dielectric metasurfaces.ACS Photonics5, 2402–2407 (2018)..
Phan, T. et al. High-efficiency, large-area, topology-optimized metasurfaces.Light.: Sci. Appl.8, 48 (2019)..
Sell, D. et al. Periodic dielectric metasurfaces with high-efficiency, multiwavelength functionalities.Adv. Optical Mater.5, 1700645 (2017)..
Shi, Z. J. et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion.Sci. Adv.6, eaba3367 (2020)..
Yang, J. J., Sell, D.&Fan, J. A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering.Ann. Der Phys.530, 1700302 (2018)..
Lu, J.&Vučković, J. Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes.Opt. Express20, 7221–7236 (2012)..
Huang, J. et al. Ultra-compact broadband polarization beam splitter with strong expansibility.Photonics Res.6, 574–578 (2018)..
Huang, J. et al. Implementation of on-chip multi-channel focusing wavelength demultiplexer with regularized digital metamaterials.Nanophotonics9, 159–166 (2019)..
Lin, Z., Lončar, M.&Rodriguez, A. W. Topology optimization of multi-track ring resonators and 2D microcavities for nonlinear frequency conversion.Opt. Lett.42, 2818–2821 (2017)..
Veronis, G., Dutton, R. W.&Fan, S. H. Method for sensitivity analysis of photonic crystal devices.Opt. Lett.29, 2288–2290 (2004)..
Kao, C. Y., Osher, S.&Yablonovitch, E. Maximizing band gaps in two-dimensional photonic crystals by using level set methods.Appl. Phys. B81, 235–244 (2005)..
Piggott, A. Y. et al. Fabrication-constrainednanophotonic inverse design.Sci. Rep.7, 1786 (2017)..
Skarda, J. et al. Inverse designed cavity-waveguide couplers. InProceedings of 2019 Conference on Lasers and Electro-Optics(IEEE, 2019).
Sitawarin, C. et al. Inverse-designed photonic fibers and metasurfaces for nonlinear frequency conversion [Invited].Photonics Res.6, B82–B89 (2018)..
Sapra, N. V. et al. Inverse design and demonstration ofbroadband grating couplers.IEEE J. Sel. Top. Quantum Electron.25, 6100207 (2019)..
Skarda, J. et al. Toward inverse-designed optical interconnect. InProceedings of 2020 IEEE Photonics Conference(IEEE, 2020).
Ahn, G. H. et al. Inverse design of microresonator dispersion for nonlinear optics. InProceedings of 2020 Conference on Lasers and Electro-Optics(IEEE, 2020).
Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR.Nat. Photonics14, 369–374 (2020)..
Sapra, N. V. et al. On-chip integrated laser-driven particle accelerator.Science367, 79–83 (2020)..
Dory, C. et al. Inverse-designed diamond photonics.Nat. Commun.10, 3309 (2019)..
Bruns, T. E.&Tortorelli, D. A. Topology optimization of non-linear elastic structures and compliant mechanisms.Computer Methods Appl. Mech. Eng.190, 3443–3459 (2001)..
Sigmund, O. On the design of compliant mechanisms using topology optimization.Mech. Struct. Mach.25, 493–524 (1997)..
Bendsøe, M. P.&Soares, C. A. M.Topology Design of Structures(Kluwer Academic Publishers, 1993).
Jensen, J. S.&Sigmund, O. Topology optimization of photonic crystal structures: ahigh-bandwidth low-loss T-junction waveguide.J. Optical Soc. Am. B22, 1191–1198 (2005)..
Chakrabarti, A. Learning sensor multiplexing design through back-propagation. InProceedings of the 30th International Conference on Neural Information Processing Systems3089–3097 (Curran Associates Inc., 2016).
Frei, W. R., Tortorelli, D. A.&Johnson, H. T. Geometry projection method for optimizing photonic nanostructures.Opt. Lett.32, 77–79 (2007)..
Zhou, M. D. et al. Minimum length scale in topology optimization by geometric constraints.Computer Methods Appl. Mech. Eng.293, 266–282 (2015)..
Chen, M. K., Jiang, J. Q.&Fan, J. A. Design space reparameterization enforces hard geometric constraints in inverse-designed nanophotonic devices.ACS Photonics7, 3141–3151 (2020)..
Seldowitz, M. A., Allebach, J. P.&Sweeney, D. W. Synthesis of digital holograms by direct binary search.Appl. Opt.26, 2788–2798 (1987)..
Xu, K. et al. Integrated photonic power divider with arbitrary power ratios.Opt. Lett.42, 855–858 (2017)..
Augenstein, Y. et al. Inverse photonic design of functional elements that focus Bloch surface waves.Light.: Sci. Appl.7, 104 (2018)..
Jia, H. et al. Mode-oriented permutation cipher encryption and passive signal switching based on multiobjective optimized silicon subwavelength metastructures.ACS Photonics7, 2163–2172 (2020)..
Majumder, A. et al. Programmable metamaterials&metasurfaces for ultra-compact multi-functional photonics. InProceedings of 2019 Conference on Lasers and Electro-Optics(IEEE, 2019).
Liu, Y. J. et al. Subwavelength polarization splitter–rotator with ultra-compact footprint.Opt. Lett.44, 4495–4498 (2019)..
Abrokwah, K. O. Characterization and modeling of plasma etch pattern dependencies in integrated circuits. PhD thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts, (2006).
Chang, W. J. et al. Ultra-compact mode (de) multiplexer based on subwavelength asymmetric Y-junction.Opt. Express26, 8162–8170 (2018)..
Lu, L. L. Z. et al. Inverse-designed ultra-compact star-crossings based on PhC-like subwavelength structures for optical intercross connect.Opt. Express25, 18355–18364 (2017)..
Zhou, F. Y. et al. Ultra-compact, low-loss and low-crosstalk wavelength demultiplexer for CWDM system based on the photonic-crystal-like metamaterial structure. InProceedings of 2017 Conference on Lasers and Electro-Optics(IEEE, 2017).
Chang, W. J. et al. Inverse design of a single-step-etched ultracompact silicon polarization rotator.Opt. Express28, 28343–28351 (2020)..
Chang, W. J. et al. Ultra-compact silicon multi-mode waveguide bend based on subwavelength asymmetric Y-junction. InProceedings of 2018 Optical Fiber Communications Conference and Exposition(IEEE, 2018).
Chang, W. J. et al. Ultracompact dual-mode waveguide crossing based on subwavelength multimode-interference couplers.Photonics Res.6, 660–665 (2018)..
Chang, W. J. et al. Inverse design and demonstration of an ultracompact broadband dual-mode 3 dB power splitter.Opt. Express26, 24135–24144 (2018)..
Ma, H. S. et al. Ultra-compact and efficient 1 × 2 mode converters based on rotatable direct-binary-search algorithm.Opt. Express28, 17010–17019 (2020)..
Spuhler, M. M. et al. A very short planar silica spot-size converter using a nonperiodic segmented waveguide.J. Lightwave Technol.16, 1680–1685 (1998)..
Gondarenko, A.&Lipson, M. Low modal volume dipole-like dielectric slab resonator.Opt. Express16, 17689–17694 (2008)..
Yu, Z. J., Cui, H. R.&Sun, X. K. Genetically optimized on-chip wideband ultracompact reflectors and Fabry-Perot cavities.Photonics Res.5, B15–B19 (2017)..
Xu, P. F. et al. Scaling and cascading compact metamaterial photonic waveguide filter blocks.Opt. Lett.45, 4072–4075 (2020)..
Liu, Z. H. et al. Integrated nanophotonic wavelength router based on an intelligent algorithm.Optica6, 1367–1373 (2019)..
Bruck, R. et al. All-optical spatial light modulator for reconfigurable silicon photonic circuits.Optica3, 396–402 (2016)..
Mak, J. C. C. et al. Binary particle swarm optimized 2 × 2 power splitters in a standard foundry silicon photonic platform.Opt. Lett.41, 3868–3871 (2016)..
Lu, Q. C. et al. Particle swarm optimized ultra-compact polarization beam splitter on silicon-on-insulator.Photonics Nanostruct. - Fundamentals Appl.32, 19–23 (2018)..
Kennedy, J.&Eberhart, R. C. A discrete binary version of the particle swarm algorithm. InProceedings of 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation, 4104–4108 (IEEE, 1997).
Jiang, J. Q., Chen, M. K.&Fan, J. A. Deep neural networks for the evaluation and design of photonic devices.Nat. Rev. Mater.6, 679–700 (2021)..
Wiecha, P. R. et al. Deep learning in nano-photonics: inverse design and beyond.Photonics Res.9, B182–B200 (2021)..
Metanet - Stanford. athttp://metanet.stanford.edu/code/http://metanet.stanford.edu/code/.
So, S. et al. Deep learning enabled inverse design in nanophotonics.Nanophotonics9, 1041–1057 (2020)..
Hegde, R. S. Accelerating optics design optimizations with deep learning.Optical Eng.58, 065103 (2019)..
Ho, S. L.&Yang, S. Y. The cross-entropy method and its application to inverse problems.IEEE Trans. Magn.46, 3401–3404 (2010)..
Gostimirovic, D.&Ye, W. N. An open-source artificial neural network model for polarization-insensitive silicon-on-insulator subwavelength grating couplers.IEEE J. Sel. Top. Quantum Electron.25, 8200205 (2019)..
Nadell, C. C. et al. Deep learning for accelerated all-dielectric metasurface design.Opt. Express27, 27523–27535 (2019)..
Liu, D. J. et al. Training deep neural networks for the inverse design of nanophotonic structures.ACS Photonics5, 1365–1369 (2018)..
Gao, L. et al. A bidirectional deep neural network for accurate silicon color design.Adv. Mater.31, 1905467 (2019)..
Long, Y. et al. Inverse design of photonic topological state via machine learning.Appl. Phys. Lett.114, 181105 (2019)..
Peurifoy, J. et al. Nanophotonic particle simulation and inverse design using artificial neural networks.Sci. Adv.4, eaar4206 (2018)..
Asano, T.&Noda, S. Optimization of photonic crystal nanocavities based on deep learning.Opt. Express26, 32704–32717 (2018)..
Zhelyeznyakov, M. V., Brunton, S.&Majumdar, A. Deep learning to accelerate scatterer-to-field mapping for inverse design of dielectric metasurfaces.ACS Photonics8, 481–488 (2021)..
Ren, S. M., Padilla, W.&Malof, J. Benchmarking deep inverse models over time, and the neural-adjoint method.arXiv Prepr.2009, 12919 (2021)..
Deng, Y. et al. Neural-adjoint method for the inverse design of all-dielectric metasurfaces.Opt. Express29, 7526–7534 (2021)..
Liu, Z. C. et al. Generative model for the inverse design of metasurfaces.Nano Lett.18, 6570–6576 (2018)..
Jiang, J. Q. et al. Free-form diffractive metagrating design based on generative adversarial networks.ACS Nano13, 8872–8878 (2019)..
Wen, F. F., Jiang, J. Q.&Fan, J. A. Robust freeform metasurface design based on progressively growing generative networks.ACS Photonics7, 2098–2104 (2020)..
Dinsdale, N. J. et al. Deep learning enabled design of complex transmission matrices for universal optical components.ACS Photonics8, 283–295 (2021)..
Jiang, J.&Fan, J. A. Global optimization of dielectric metasurfaces using a physics-driven neural network.Nano Lett.19, 5366–5372 (2019)..
Jiang, J. Q.&Fan, J. A. Multiobjective and categorical global optimization of photonic structures based on ResNet generative neural networks.Nanophotonics10, 361–369(2020)..
Sajedian, I., Badloe, T.&Rho, J. Optimisation of colour generation from dielectric nanostructures using reinforcement learning.Opt. Express27, 5874–5883 (2019)..
Wang, H. Z. et al. Automated multi-layer optical design via deep reinforcement learning.Mach. Learn.: Sci. Technol.2, 025013 (2021)..
Badloe, T., Kim, I.&Rho, J. Biomimetic ultra-broadband perfect absorbers optimised with reinforcement learning.Phys. Chem. Chem. Phys.22, 2337–2342 (2020)..
Sajedian, I.,Lee, H.&Rho, J. Double-deep Q-learning to increase the efficiency of metasurface holograms.Sci. Rep.9, 10899 (2019)..
Angeris, G., Vučković, J.&Boyd, S. P. Computational bounds for photonic design.ACS Photonics6, 1232–1239 (2019)..
Kuang, Z. Y.&Miller, O. D. Computational bounds to light-matter interactions via local conservation laws.Phys. Rev. Lett.125, 263607 (2020)..
Angeris, G., Vučković, J.&Boyd, S. Heuristic methods and performance bounds for photonic design.Opt. Express29, 2827–2854 (2021)..
Vercruysse, D. et al. Level-set fabrication constraints for gradient-based optimization of optical devices.Proceedings of 2018 Conference on Lasers and Electro-Optics. San Jose: IEEE, 2018.
Men, H. et al. Robust topology optimization of three-dimensional photonic-crystal band-gap structures.Opt. Express22, 22632–22648 (2014)..
Sigmund, O., Jensen, J. S.&Frandsen, L. H. On nanostructured silicon success.Nat. Photonics10, 142–143 (2016)..
Kojima, K. et al. Acceleration of FDTD-based inverse design using a neural network approach. InProceedings of the Integrated Photonics Research, Silicon and Nanophotonics 2017(Optical Society of America, 2017).
Teng, M. et al. Broadband SOI mode order converter based on topology optimization. InProceedings of the Optical Fiber Communications Conference and Exposition(IEEE, 2018).
Li, Y. et al. Waveguide metatronics: lumped circuitry based on structural dispersion.Sci. Adv.2, e1501790 (2016)..
Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology.Nature573, 507–518 (2019)..
Meng, Y. et al. Waveguide engineering of graphene optoelectronics—modulators and polarizers.IEEE Photonics J.10, 6600217 (2018)..
Wang, C. et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages.Nature562, 101–104 (2018)..
Qi, Y. F.&Li, Y. Integrated lithium niobate photonics.Nanophotonics9, 1287–1320 (2020)..
Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators.Nano Lett.14, 6526–6532 (2014)..
Sun, J. et al. Large-scale nanophotonic phased array.Nature493, 195–199 (2013)..
Zheludev, N. I.&Plum, E. Reconfigurable nanomechanical photonic metamaterials.Nat. Nanotechnol.11, 16–22 (2016)..
Nambiar, S. et al. High efficiency DBR assisted grating chirp generators for silicon nitride fiber-chip coupling.Sci. Rep.9, 18821 (2019)..
Yin, X. F. et al. Observation of topologically enabled unidirectional guided resonances.Nature580, 467–471 (2020)..
Hsu, C. W. et al. Bound states in the continuum.Nat. Rev. Mater.1, 16048 (2016)..
Ong, L. L. et al. Programmable self-assembly of three-dimensional nanostructures from 10, 000 unique components.Nature552, 72–77 (2017)..
Sun, W. et al. Casting inorganic structures with DNA molds.Science346, 1258361 (2014)..
Verhagen, E. et al. Nanowire plasmon excitation by adiabatic mode transformation.Phys. Rev. Lett.102, 203904 (2009)..
Ding, F.&Bozhevolnyi, S. I. A review of unidirectional surface plasmon polariton metacouplers.IEEE J. Sel. Top. Quantum Electron.25, 4600611 (2019)..
West, P. R. et al. Searching for better plasmonic materials.Laser Photonics Rev.4, 795–808 (2010)..
Haffner, C. et al. Low-loss plasmon-assisted electro-optic modulator.Nature556, 483–486 (2018)..
Wang, Y. et al. Stable, high-performance sodium-based plasmonic devices in the near infrared.Nature581, 401–405 (2020)..
Woessner, A. et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures.Nat. Mater.14, 421–425 (2015)..
Naik, G. V., Shalaev, V. M.&Boltasseva, A. Alternative plasmonic materials: Beyond gold and silver.Adv. Mater.25, 3264–3294 (2013)..
Boltasseva, A.&Atwater, H. A. Low-loss plasmonic metamaterials.Science331, 290–291 (2011)..
Tahersima, M. H. et al. Deep neural network inverse design of integrated photonic power splitters.Sci. Rep.9, 1368 (2019)..
Melati, D. et al. Mapping the global design space of nanophotonic components using machine learning pattern recognition.Nat. Commun.10, 4775 (2019)..
Qu, Y. R. et al. Migrating knowledge between physical scenarios based on artificial neural networks.ACS Photonics6, 1168–1174 (2019)..
Nanoscale and Quantum Photonics Lab. Inverse design of photonics.https://nqp.stanford.edu/inverse-design-photonicshttps://nqp.stanford.edu/inverse-design-photonics.
Lumerical. Photonic inverse design.https://www.lumerical.com/solutions/inverse-design/https://www.lumerical.com/solutions/inverse-design/.
Piggott, A. Y. et al. Inverse-designed photonics for semiconductor foundries.ACS Photonics7, 569–575 (2020)..
Liao, K. et al. On-chip nanophotonic devices based on dielectric metasurfaces.Acta Opt. Sin.41, 0823001 (2021)..
Kim, Y. et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces.Nano Lett.19, 3961–3968 (2019)..
Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions.Nat. Nanotechnol.15, 125–130 (2020)..
Lin, X. et al. All-optical machine learning using diffractive deep neural networks.Science361, 1004–1008 (2018)..
Wetzstein, G. et al. Inference in artificial intelligence with deep optics and photonics.Nature588, 39–47 (2020)..
Colburn, S. et al. Optical frontend for a convolutional neural network.Appl. Opt.58, 3179–3186 (2019)..
Burgos, C. M. V. et al. Design framework for metasurface optics-based convolutional neural networks.Appl. Opt.60, 4356–4365 (2021)..
Georgi, P. et al. Metasurface interferometry toward quantum sensors.Light.: Sci. Appl.8, 70 (2019)..
Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials.Science361, 1101–1104 (2018)..
Özdemir, Ş. K. et al. Parity-time symmetry and exceptional points in photonics.Nat. Mater.18, 783–798 (2019)..
Guo, X. X. et al. Nonreciprocal metasurface with space-time phase modulation.Light.: Sci. Appl.8, 123 (2019)..
Williamson, I. A. D. et al. Integrated nonreciprocal photonic devices with dynamic modulation.Proc. IEEE108, 1759–1784 (2020)..
Feng, L. et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies.Nat. Mater.12, 108–113 (2013)..
Miao, P. et al. Orbital angular momentum microlaser.Science353, 464–467 (2016)..
Tsakmakidis, K. L. et al. Breaking Lorentz reciprocity to overcome the time-bandwidth limit in physics and engineering.Science356, 1260–1264 (2017)..
Lawrence, M., Barton, D. R. III&Dionne, J. A. Nonreciprocal flat optics with silicon metasurfaces.Nano Lett.18, 1104–1109 (2018)..
Xu, X. Y. et al. 11 TOPS photonic convolutional accelerator for optical neural networks.Nature589, 44–51 (2021)..
Wen, Z. et al. Self-powered textile for wearable electronics by hybridizing fiber-shaped nanogenerators, solar cells, and supercapacitors.Sci. Adv.2, e1600097 (2016)..
Yuan, W. et al. Super-achromatic monolithic microprobe for ultrahigh-resolution endoscopic optical coherence tomography at 800 nm.Nat. Commun.8, 1531 (2017)..
Gao, W. L. et al. Chiral surface waves supported by biaxial hyperbolic metamaterials.Light. Sci. Appl.4, e328 (2015)..
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale.Nature461, 629–632 (2009)..
Goykhman, I. et al. Locally oxidized silicon surface-plasmon schottky detector for telecom regime.Nano Lett.11, 2219–2224 (2011)..
Ni, G. X. et al. Fundamental limits to graphene plasmonics.Nature557, 530–533 (2018)..
Li, Z. B. et al. Graphene plasmonic metasurfaces to steer infrared light.Sci. Rep.5, 12423 (2015)..
Liu, Z. et al. Largely tunable terahertz circular polarization splitters based on patterned graphene nanoantenna arrays.IEEE. Photon. J.11, 4501211 (2019)..
Correas-Serrano, D.&Gomez-Diaz, J. S. Nonreciprocal and collimated surface plasmons in drift-biased graphene metasurfaces.Phys. Rev. B100, 081410 (2019)..
You, J. W., Lan, Z. H.&Panoiu, N. C. Four-wave mixing of topological edge plasmons in graphene metasurfaces.Sci. Adv.6, eaaz3910 (2020)..
Lee, H. S. et al. Selective amplification of the primary exciton in a MoS2monolayer.Phys. Rev. Lett.115, 226801 (2015)..
Hu, F. T. et al. Two-plasmon spontaneous emission from a nonlocal epsilon-near-zero material.Commun. Phys.4, 84 (2021)..
Silva, A. et al. Performing mathematical operations with metamaterials.Science343, 160–163 (2014)..
Feldmann, J. et al. Parallel convolutional processing using an integrated photonic tensor core.Nature589, 52–58 (2021)..
Camacho, M., Edwards, B.&Engheta, N. A single inverse-designed photonic structure that performs parallel computing.Nat. Commun.12, 1466 (2021)..
Qu, Y. R. et al. Inverse design of an integrated-nanophotonics optical neural network.Sci. Bull.65, 1177–1183 (2020)..
Papaioannou, M., Plum, E.&Zheludev, N. I. All-optical pattern recognition and image processing on a metamaterial beam splitter.ACS Photonics4, 217–222 (2017)..
Zhou, J. X. et al. Metasurface enabled quantum edge detection.Sci. Adv.6, eabc4385 (2020)..
Wu, Z. C. et al. Neuromorphic metasurface.Photonics Res.8, 46–50 (2020)..
Li, L. L. et al. Intelligent metasurface imager and recognizer.Light. Sci. Appl.8, 97 (2019)..
del Hougne, P.&Lerosey, G. Leveraging chaos for wave-based analog computation: demonstration with indoor wireless communication signals.Phys. Rev. X8, 041037 (2018)..
del Hougne, P. et al. Learned integrated sensing pipeline: reconfigurable metasurface transceivers as trainable physical layer in an artificial neural network.Adv. Sci.7, 1901913 (2020)..
Shen, Y. C. et al. Deep learning with coherent nanophotonic circuits.Nat. Photonics11, 441–446 (2017)..
Wen, X., Xu, K.&Song, Q. H. Design of a barcode-like waveguide nanostructure for efficient chip-fiber coupling.Photonics Res.4, 209–213 (2016)..
Wang, Y. et al. Design of broadband subwavelength grating couplers with low back reflection.Opt. Lett.40, 4647–4650 (2015)..
Slussarenko, S. et al. Guiding light via geometric phases.Nat. Photoincs10, 571–575 (2016)..
Lumer, Y. et al. Light guiding by artificial gauge fields.Nat. Photonics13, 339–345 (2019)..
Miller, D. A. B. Huygens's wave propagation principle corrected.Opt. Lett.16, 1370–1372 (1991)..
Lalanne, P. et al. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff.J. Optical Soc. Am. A16, 1143–1156 (1999)..
Smith, D. R. et al. Composite medium with simutaneously negative perme- ability and permittivity.Phys. Rev. Lett.84, 4184–4187 (2000)..
Sapra, N. V. et al. Waveguide-integrated dielectric laser particle accelerators through the inverse design of photonics. InProceedings of 2019 Conference on Lasers and Electro-Optics(IEEE, 2019).
Yang, K. Y. et al. Inverse-designed multi-dimensional silicon photonic transmitters. Preprint athttps://arxiv.org/abs/2103.14139https://arxiv.org/abs/2103.14139(2021).
Wu, Q., Turpin, J. P.&Werner, D. H. Integrated photonic systems based on transformation optics enabled gradient index devices.Light.: Sci. Appl.1, e38 (2012)..
Wu, S. L. et al. A compact and polarization-insensitive silicon waveguide crossing based on subwavelength grating MMI couplers.Opt. Express28, 27268–27276 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构