1.Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
2.Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117564, Singapore
3.Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
4.Department of Electronics and Photonics, Institute of High Performance Computing, A*STAR (Agency for Science, Technology and Research), 1 Fusionopolis Way, Singapore 138632, Singapore
5.Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500 AE Enschede, The Netherlands
Vijith Kalathingal (vijith.k@nus.edu.sg)
Christian A. Nijhuis (c.a.nijhuis@utwente.nl)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-08,
收稿日期:2021-02-08,
修回日期:2021-09-13,
录用日期:2021-10-08
Scan QR Code
Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling[J]. LSA, 2021,10(12):2387-2398.
Wang, Z. et al. Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling. Light: Science & Applications, 10, 2387-2398 (2021).
Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling[J]. LSA, 2021,10(12):2387-2398. DOI: 10.1038/s41377-021-00659-7.
Wang, Z. et al. Optical Anisotropy in van der Waals materials: Impact on Direct Excitation of Plasmons and Photons by Quantum Tunneling. Light: Science & Applications, 10, 2387-2398 (2021). DOI: 10.1038/s41377-021-00659-7.
Inelastic quantum mechanical tunneling of electrons across plasmonic tunnel junctions can lead to surface plasmon polariton (SPP) and photon emission. So far
the optical properties of such junctions have been controlled by changing the shape
or the type of the material
of the electrodes
primarily with the aim to improve SPP or photon emission efficiencies. Here we show that by tuning the tunneling barrier itself
the efficiency of the inelastic tunneling rates can be improved by a factor of 3. We exploit the anisotropic nature of hexagonal boron nitride (hBN) as the tunneling barrier material in Au//hBN//graphene tunnel junctions where the Au electrode also serves as a plasmonic strip waveguide. As this junction constitutes an optically transparent hBN–graphene heterostructure on a glass substrate
it forms an open plasmonic system where the SPPs are directly coupled to the dedicated strip waveguide and photons outcouple to the far field. We experimentally and analytically show that the photon emission rate per tunneling electron is significantly improved (~ ×3) in Au//hBN//graphene tunnel junction due to the enhancement in the local density of optical states (LDOS) arising from the hBN anisotropy. With the dedicated strip waveguide
SPP outcoupling efficiency is quantified and is found to be ~80% stronger than the radiative outcoupling in Au//hBN//graphene due to the high LDOS of the SPP decay channel associated with the inelastic tunneling. The new insights elucidated here deepen our understanding of plasmonic tunnel junctions beyond the isotropic models with enhanced LDOS.
Gramotnev, D. K.&Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit.Nat. Photonics4, 83–91 (2010)..
Novotny, L.&van Hulst, N. Antennas for light.Nat. Photonics5, 83–90 (2011)..
Blascetta, N. P. et al. Nanoscale imaging and control of hexagonal boron nitride single photon emitters by a resonant nanoantenna.Nano Lett.20, 1992–1999 (2020)..
Huang, K. C. Y. et al. Electrically driven subwavelength optical nanocircuits.Nat. Photonics8, 244–249 (2014)..
Atwater, H. A.&Polman, A. Plasmonics for improved photovoltaic devices.Nat. Mater.9, 205–213 (2010)..
Fang, Z. Y. et al. Graphene-antenna sandwich photodetector.Nano Lett.12, 3808–3813 (2012)..
Kneipp, K. et al. Single molecule detection using surface-enhanced raman scattering (SERS).Phys. Rev. Lett.78, 1667–1670 (1997)..
Rodrigo, D. et al. Mid-infrared plasmonic biosensing with graphene.Science349, 165–168 (2015)..
Yu, N. F. et al. Small-divergence semiconductor lasers by plasmonic collimation.Nat. Photonics2, 564–570 (2008)..
Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale.Nature461, 629–632 (2009)..
Chang, D. E. et al. Quantum optics with surface plasmons.Phys. Rev. Lett.97, 053002 (2006)..
Gonzalez-Tudela, A. et al. Entanglement of two qubits mediated by one-dimensional plasmonic waveguides.Phys. Rev. Lett.106, 020501 (2011)..
Du, W. et al. Highly efficient on-chip direct electronic–plasmonic transducers.Nat. Photonics11, 623–627 (2017)..
Lambe, J.&McCarthy, S. L. Light emission from inelastic electron tunneling.Phys. Rev. Lett.37, 923–925 (1976)..
Davis, L. C. Theory of surface-plasmon excitation in metal-insulator-metal tunnel junctions.Phys. Rev. B16, 2482–2490 (1977)..
Dawson, P. et al. Observation and explanation of light-emission spectra from statistically rough cu, ag, and au tunnel junctions.Phys. Rev. B30, 3164–3178 (1984)..
Qian, H. L. et al. Efficient light generation from enhanced inelastic electron tunnelling.Nat. Photonics12, 485–488 (2018)..
Zhang, C. et al. Antenna surface plasmon emission by inelastic tunneling.Nat. Commun.10, 4949 (2019)..
Parzefall, M.&Novotny, L. Optical antennas driven by quantum tunneling: A key issues review.Rep. Prog. Phys.82, 112401 (2019)..
Duffin, T. J. et al. Cavity plasmonics in tunnel junctions: Outcoupling and the role of surface roughness.Phys. Rev. Appl.14, 044021 (2020)..
Makarenko, K. S. et al. Efficient surface plasmon polariton excitation and control over outcoupling mechanisms in metal–insulator–metal tunneling junctions.Adv. Sci.7, 1900291 (2020)..
Ushioda, S. et al. Grating-coupled light emission from the slow mode of metal-insulator-metal tunnel junctions.Jpn. J. Appl. Phys.31, L870–L873 (1992)..
Ushioda, S., Rutledge, J. E.&Pierce, R. M. Prism-coupled light emission from tunnel junctions.Phys. Rev. Lett.54, 224–226 (1985)..
Urbieta, M. et al. Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect.ACS Nano12, 585–595 (2018)..
Hecht, B. et al. Local excitation, scattering, and interference of surface plasmons.Phys. Rev. Lett.77, 1889–1892 (1996)..
Parzefall, M.&Novotny, L. Light at the end of the tunnel.ACS Photonics5, 4195–4202 (2018)..
Purcell, E. M., Torrey, H. C.&Pound, R. V. Resonance absorption by nuclear magnetic moments in a solid.Phys. Rev. J. Arch.69, 37–38 (1946)..
Ford, G. W.&Weber, W. H. Electromagnetic interactions of molecules with metal surfaces.Phys. Rep.113, 195–287 (1984)..
Aizpurua, J. et al. Electromagnetic coupling on an atomic scale.Phys. Rev. Lett.89, 156803 (2002)..
Kalathingal, V., Dawson, P.&Mitra, J. Scanning tunneling microscope light emission: effect of the strong dc field on junction plasmons.Phys. Rev. B94, 035443 (2016)..
Zhang, C. et al. Surface plasmon polaritons emission with nanopatch antennas: enhancement by means of mode hybridization.ACS Photonics6, 2788–2796 (2019)..
Koppens, F. H. L., Chang, D. E.&de Abajo, F. J. G. Graphene plasmonics: a platform for strong light–matter interactions.Nano Lett.11, 3370–3377 (2011)..
Parzefall, M. et al. Light from van der waals quantum tunneling devices.Nat. Commun.10, 292 (2019)..
de Vega, S.&de Abajo, F. J. G. Plasmon generation through electron tunneling in twisted double-layer graphene and metal-insulator-graphene systems.Phys. Rev. B99, 115438 (2019)..
Namgung, S. et al. Ultrasmall plasmonic single nanoparticle light source driven by a graphene tunnel junction.ACS Nano12, 2780–2788 (2018)..
Parzefall, M. et al. Antenna-coupled photon emission from hexagonal boron nitride tunnel junctions.Nat. Nanotechnol.10, 1058–1063 (2015)..
Caldwell, J. D. et al. Photonics with hexagonal boron nitride.Nat. Rev. Mater.4, 552–567 (2019)..
Xia, F. N. et al. Two-dimensional material nanophotonics.Nat. Photonics8, 899–907 (2014)..
Song, L. et al. Large scale growth and characterization of atomic hexagonal boron nitride layers.Nano Lett.10, 3209–3215 (2010)..
Laturia, A., Van de Put, M. L.&Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: From monolayer to bulk.npj 2D Mater. Appl.2, 6 (2018)..
Rah, Y. et al. Optical analysis of the refractive index and birefringence of hexagonal boron nitride from the visible to near-infrared.Opt. Lett.44, 3797–3800 (2019)..
Geick, R., Perry, C. H.&Rupprecht, G. Normal modes in hexagonal boron nitride.Phys. Rev. J. Arch.146, 543–547 (1966)..
Gjerding, M. N. et al. Layered van der waals crystals with hyperbolic light dispersion.Nat. Commun.8, 320 (2017)..
Illarionov, Y. Y. et al. Insulators for 2d nanoelectronics: The gap to bridge.Nat. Commun.11, 3385 (2020)..
Chance, R. R., Prock, A.&Silbey, R. Molecular fluorescence and energy transfer near interfaces. in Advances in chemical physics, Volume 37 (eds Prigogine, I.&Rice, S. A. ) (Weinheim: John Wiley&Sons, Inc., 1978), 1–65.
Wasey, J. A. E. et al. Effects of dipole orientation and birefringence on the optical emission from thin films.Opt. Commun.183, 109–121 (2000)..
Messinger, A., Westerberg, N.&Barnett, S. M. Spontaneous emission in anisotropic dielectrics.Phys. Rev. A102, 013721 (2020)..
Novotny, L.&Hecht, B.Principles of nano-optics. 2nd edn, (Cambridge: Cambridge university press, 2012).
Olmon, R. L. et al. Optical dielectric function of gold.Phys. Rev. B86, 235147 (2012)..
Yeh, P.Optical waves in layered media. (New York: John WIley&Sons, 1988).
Weber, J. W., Calado, V. E.&van de Sanden, M. C. M. Optical constants of graphene measured by spectroscopic ellipsometry.Appl. Phys. Lett.97, 091904 (2010)..
Novotny, L. Allowed and forbidden light in near-field optics. I. a single dipolar light source.J. Optical Soc. Am. A14, 91–104 (1997)..
Chen, X. W., Agio, M.&Sandoghdar, V. Metallodielectric hybrid antennas for ultrastrong enhancement of spontaneous emission.Phys. Rev. Lett.108, 233001 (2012)..
Clemmow, P. C. The theory of electromagnetic waves in a simple anisotropic medium.Proc. Inst. Electr. Eng.110, 101–106 (1963)..
Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers.Nano Lett.12, 1707–1710 (2012)..
Schull, G. et al. Electron-plasmon and electron-electron interactions at a single atom contact.Phys. Rev. Lett.102, 057401 (2009)..
Luo, Y. et al. Surface plasmons and nonlocality: a simple model.Phys. Rev. Lett.111, 093901 (2013)..
Ciracì, C. et al. Probing the ultimate limits of plasmonic enhancement.Science337, 1072–1074 (2012)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构