1.CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui, China
2.Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui, China
Zhi-Yuan Zhou (zyzhouphy@ustc.edu.cn)
Bao-Sen Shi (drshi@ustc.edu.cn)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-26,
收稿日期:2021-03-29,
修回日期:2021-09-30,
录用日期:2021-10-11
Scan QR Code
Angular-spectrum-dependent interference[J]. LSA, 2021,10(11):2226-2232.
Yang, C. et al. Angular-spectrum-dependent interference. Light: Science & Applications, 10, 2226-2232 (2021).
Angular-spectrum-dependent interference[J]. LSA, 2021,10(11):2226-2232. DOI: 10.1038/s41377-021-00661-z.
Yang, C. et al. Angular-spectrum-dependent interference. Light: Science & Applications, 10, 2226-2232 (2021). DOI: 10.1038/s41377-021-00661-z.
Optical interference is not only a fundamental phenomenon that has enabled new theories of light to be derived but it has also been used in interferometry for the measurement of small displacements
refractive index changes
and surface irregularities. In a two-beam interferometer
variations in the interference fringes are used as a diagnostic for anything that causes the optical path difference (OPD) to change; therefore
for a specified OPD
greater variation in the fringes indicates better measurement sensitivity. Here
we introduce and experimentally validate an interesting optical interference phenomenon that uses photons with a structured frequency-angular spectrum
which are generated from a spontaneous parametric down-conversion process in a nonlinear crystal. This interference phenomenon is manifested as interference fringes that vary much more rapidly with increasing OPD than the corresponding fringes for equal-inclination interference; the phenomenon is parameterised using an equivalent wavelength
which under our experimental conditions is 29.38 nm or about 1/27 of the real wavelength. This phenomenon not only enriches the knowledge with regard to optical interference but also offers promise for applications in interferometry.
Jacques, V. et al. Experimental realization of Wheeler's delayed-choice gedanken experiment.Science315, 966–968 (2007)..
Ionicioiu, R.&Terno, D. R. Proposal for a quantum delayed-choice experiment.Phys. Rev. Lett.107, 230406 (2011)..
Zhou, Z. Y. et al. Quantum twisted double-slits experiments: confirming wavefunctions' physical reality.Sci. Bull.62, 1185–1192 (2017)..
Hong, C. K., Ou, Z. Y.&Mandel, L. Measurement of subpicosecond time intervals between two photons by interference.Phys. Rev. Lett.59, 2044–2046 (1987)..
Brown, R. H.&Twiss, R. Q. Correlation between photons in two coherent beams of light.Nature177, 27–29 (1956)..
Gossman, D. et al. Optical interference with digital holograms.Am. J. Phys.84, 508–516 (2016)..
Santarsiero, M.&Gori, F. Spectralchanges in a young interference pattern.Phys. Lett. A167, 123–128 (1992)..
Wood, R. W. XLV. Some new cases of interference and diffraction.Lond., Edinb., Dublin Philos. Mag. J. Sci.7, 376–388 (1904)..
Jack, B., Padgett, M. J.&Franke-Arnold, S. Angular diffraction.N. J. Phys.10, 103013 (2008)..
Forbes, A., De Oliveira, M.&Dennis, M. R. Structured light.Nat. Photonics15, 253–262 (2021)..
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger.Phys. Rev. Lett.116, 061102 (2016)..
Huang, D. et al. Optical coherence tomography.Science254, 1178–1181 (1991)..
Stuart, B. H. Infrared Spectroscopy: Fundamentals and Applications. (Hoboken: John Wiley&Sons, 2004).
Bergh, R. A., Lefevre, H. C.&Shaw, H. J. All-single-mode fiber-optic gyroscope.Opt. Lett.6, 198–200 (1981)..
Born, M.&Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. (Oxford: Pergamon Press, 1964).
Harris, S. E., Oshman, M. K.&Byer, R. L. Observation of tunable optical parametric fluorescence.Phys. Rev. Lett.18, 732–734 (1967)..
Burnham, D. C.&Weinberg, D. L. Observation of simultaneity in parametric production of optical photon pairs.Phys. Rev. Lett.25, 84–87 (1970)..
Zou, X. Y., Wang, L. J.&Mandel, L. Induced coherence and indistinguishability in optical interference.Phys. Rev. Lett.67, 318–321 (1991)..
Strekalov, D. V. et al. Observation of two-photon "ghost" interference and diffraction.Phys. Rev. Lett.74, 3600–3603 (1995)..
Kim, Y. H. et al. Delayed "choice" quantum eraser.Phys. Rev. Lett.84, 1–5 (2000)..
Gisin, N. et al. Quantum cryptography.Rev. Mod. Phys.74, 145–195 (2002)..
Jennewein, T. et al. Quantum cryptography with entangled photons.Phys. Rev. Lett.84, 4729–4732 (2000)..
Pittman, T. B. et al. Optical imaging by means of two-photon quantum entanglement.Phys. Rev. A52, R3429–R3432 (1995)..
Bouwmeester, D. et al. Experimental quantum teleportation.Nature390, 575–579 (1997)..
Boschi, D. et al. Experimental realization of teleporting an unknown pure quantum state via dual classical and einstein-podolsky-rosen channels.Phys. Rev. Lett.80, 1121–1125 (1998)..
Kok, P. et al. Linear optical quantum computing with photonic qubits.Rev. Mod. Phys.79, 135–174 (2007)..
Nagata, T. et al. Beating the standard quantum limit with four-entangled photons.Science316, 726–729 (2007)..
Lemos, G. B. et al. Quantum imaging with undetected photons.Nature512, 409–412 (2014)..
Liu, L. Z. et al. Distributed quantum phase estimation with entangled photons.Nat. Photonics15, 137–142 (2021)..
Zhong, H. S. et al. Quantum computational advantage using photons.Science370, 1460–1463 (2020)..
Shih, Y. Entangled biphoton source-property and preparation.Rep. Prog. Phys.66, 1009–1044 (2003)..
Shih, Y. An Introduction to Quantum Optics: Photon and Biphoton Physics. (Boca Raton: CRC Press, 2011), 484.
Stöhr, J. Overcoming the diffraction limit by multi-photon interference: a tutorial.Adv. Opt. Photonics11, 215–313 (2019)..
Burlakov, A. V. et al. Interference effects in spontaneous two-photon parametric scattering from two macroscopic regions.Phys. Rev. A56, 3214–3225 (1997)..
Boyd, R. W. Nonlinear Optics. 3th edn. (Amsterdam: Elsevier, 2008).
Hochrainer, A. et al. Interference fringes controlled by noninterfering photons.Optica4, 341–344 (2017)..
Kviatkovsky, I. et al. Microscopy with undetected photons in the mid-infrared.Sci. Adv.6, eabd0264 (2020)..
Chekhova, M. V.&Ou, Z. Y. Nonlinear interferometers in quantum optics.Adv. Opt. Photonics8, 104–155 (2016)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构