1.Institute of Photovoltaics/Department of Materials Science and Engineering, Nanchang University, Nanchang, 330031, China
2.Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
3.Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
4.Institute of Physical Engineering, Brno University of Technology, Technická 2, Brno, 616 69, Czech Republic
5.Laboratory for Nanophotonics, Department of Physics and Astronomy, Department of Electrical and Computer Engineering, Rice University, Houston, Texas, 77005, USA
Kai Yao (yaokai@ncu.edu.cn)
Haitao Huang (aphhuang@polyu.edu.hk)
Dangyuan Lei (dangylei@cityu.edu.hk)
纸质出版日期:2021-11-30,
网络出版日期:2021-10-28,
收稿日期:2021-04-06,
修回日期:2021-10-08,
录用日期:2021-10-12
Scan QR Code
Plasmon-induced trap filling at grain boundaries in perovskite solar cells[J]. LSA, 2021,10(11):2233-2244.
Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science & Applications, 10, 2233-2244 (2021).
Plasmon-induced trap filling at grain boundaries in perovskite solar cells[J]. LSA, 2021,10(11):2233-2244. DOI: 10.1038/s41377-021-00662-y.
Yao, K. et al. Plasmon-induced trap filling at grain boundaries in perovskite solar cells. Light: Science & Applications, 10, 2233-2244 (2021). DOI: 10.1038/s41377-021-00662-y.
The deep-level traps induced by charged defects at the grain boundaries (GBs) of polycrystalline organic–inorganic halide perovskite (OIHP) films serve as major recombination centres
which limit the device performance. Herein
we incorporate specially designed poly(3-aminothiophenol)-coated gold (Au@PAT) nanoparticles into the perovskite absorber
in order to examine the influence of plasmonic resonance on carrier dynamics in perovskite solar cells. Local changes in the photophysical properties of the OIHP films reveal that plasmon excitation could fill trap sites at the GB region through photo-brightening
whereas transient absorption spectroscopy and density functional theory calculations correlate this photo-brightening of trap states with plasmon-induced interfacial processes. As a result
the device achieved the best efficiency of 22.0% with robust operational stability. Our work provides unambiguous evidence for plasmon-induced trap occupation in OIHP and reveals that plasmonic nanostructures may be one type of efficient additives to overcome the recombination losses in perovskite solar cells and thin-film solar cells in general.
Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells.Science358, 739–744 (2017)..
Park, N. G. et al. Towards stable and commercially available perovskite solar cells.Nat. Energy1, 16152 (2016)..
Rajagopal, A., Yao, K.&Jen, A. K. Y. Toward perovskite solar cell commercialization: a perspective and research roadmap based on interfacial engineering.Adv. Mater.30, 1800455 (2018)..
Brenner, T. M. et al. Hybrid organic—inorganic perovskites: low-cost semiconductorswith intriguing charge-transport properties.Nat. Rev. Mater.1, 15007 (2016)..
Doherty, T. A. S. et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites.Nature580, 360–366 (2020)..
Pazos-Outón, L. M., Xiao, T. P.&Yablonovitch, E. Fundamental efficiency limit of lead iodide perovskite solar cells.J. Phys. Chem. Lett.9, 1703–1711 (2018)..
Luo, D. Y. et al. Minimizing non-radiative recombination losses in perovskite solar cells.Nat. Rev. Mater.5, 44–60 (2020)..
Park, B. W.&Seok, S. I. Intrinsic instability of inorganic-organic hybrid halide perovskite materials.Adv. Mater.31, 1805337 (2019)..
deQuilettes, D. W. et al. Charge-carrier recombination in halide perovskites.Chem. Rev.119, 11007–11019 (2019)..
Ni, Z. Y. et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells.Science367, 1352–1358 (2020)..
Chen, B. et al. Imperfections and their passivation in halide perovskite solar cells.Chem. Soc. Rev.48, 3842–3867 (2019)..
Aydin, E., De Bastiani, M.&De Wolf, S. Defect and contact passivation for perovskitesolar cells.Adv. Mater.31, 1900428 (2019)..
Zheng, X. P. et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations.Nat. Energy2, 17102 (2017)..
Ono, L. K., Liu, S. Z.&Qi, Y. B. Reducing detrimental defects for high-performance metal halide perovskite solar cells.Angew. Chem. Int. Ed.59, 6676–6698 (2020)..
Bi, D. Q. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%.Nat. Energy1, 16142 (2016)..
Bai, S. et al. Planar perovskite solar cells with long-term stability using ionic liquid additives.Nature571, 245–250 (2019)..
Yavari, M. et al. Carbon nanoparticles in high-performance perovskite solar cells.Adv. Energy Mater.8, 1702719 (2018)..
Li, S. S. et al. Intermixing-seeded growth for high-performance planar heterojunction perovskite solar cells assisted by precursor-capped nanoparticles.Energy Environ. Sci.9, 1282–1289 (2016)..
Tiong, V. T. et al. Octadecylamine-functionalized single-walled carbon nanotubes for facilitating the formation of a monolithic perovskite layer and stable solar cells.Adv. Funct. Mater.28, 1705545 (2018)..
Atwater, H.A.&Polman, A. Plasmonics for improved photovoltaic devices.Nat. Mater.9, 205–213 (2010)..
Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices.Nat. Photonics8, 95–103 (2014)..
Cushing, S. K.&Wu, N. Q. Progress and perspectives of plasmon-enhanced solar energy conversion.J. Phys. Chem. Lett.7, 666–675 (2016)..
Huang, X. Y. et al. Efficient plasmon-hot electron conversion in Ag-CsPbBr3hybrid nanocrystals.Nat. Commun.10, 1163 (2019)..
Carretero-Palacios, S., Jiménez-Solano, A.&Míguez, H. Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user's guide.ACS Energy Lett.1, 323–331 (2016)..
Saliba, M. et al. Plasmonic-induced photon recycling in metal halide perovskite solar cells.Adv. Funct. Mater.25, 5038–5046(2015)..
Tan, S. J. et al. Plasmonic coupling at a metal/semiconductor interface.Nat. Photonics11, 806–812 (2017)..
Ye, T. et al. Performance enhancement of tri-cation and dual-anion mixed perovskite solar cells by Au@SiO2nanoparticles.Adv. Funct. Mater.27, 1606545 (2017)..
Salvador, M. et al. Electron accumulationon metal nanoparticles in plasmon-enhanced organic solar cells.ACS Nano6, 10024–10032 (2012)..
Wang, F. et al. Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells.Adv. Mater.28, 9986–9992 (2016)..
Qian, K. et al. Functionalized shell-isolated nanoparticle-enhanced Raman spectroscopy for selective detection of trinitrotoluene.Analyst137, 4644–4646 (2012)..
Turkevich, J., Stevenson, P. C.&Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold.Discuss. Faraday Soc.11, 55–75 (1951)..
Li, S. B. et al. Unravelling the mechanism of ionic fullerene passivation for efficient and stable methylammonium-free perovskite solar cells.ACS Energy Lett.5, 2015–2022 (2020)..
Wu, S. F. et al. Modulation of defects and interfaces through alkylammonium interlayer for efficient inverted perovskite solar cells.Joule4, 1248–1262 (2020)..
Choi, H. et al. Versatile surface plasmon resonance of carbon-dot-supported silver nanoparticles in polymer optoelectronic devices.Nat. Photonics7, 732–738 (2013)..
Ahn, N. et al. Trapped charge-driven degradation of perovskite solar cells.Nat. Commun.7, 13422 (2016)..
Tress, W. et al. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells.Energy Environ. Sci.11, 151–165 (2018)..
Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures.Nat. Energy5, 35–49 (2020)..
Wang, J. et al. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics.ACS Energy Lett.4, 222–227 (2019)..
de Quilettes, D. W. et al. Impact of microstructure on local carrier lifetime in perovskite solar cells.Science348, 683–686 (2015)..
Li, J. J. et al. Microscopic investigation of grain boundaries in organolead halide perovskite solar cells.ACS Appl. Mater. Interfaces7, 28518–28523 (2015)..
Chakrabartty, J. etal. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases.Nat. Photonics12, 271–276 (2018)..
Dvořák, P. et al. Control and near-field detection of surface plasmon interference patterns.Nano Lett.13, 2558–2563 (2013)..
Qin, T. X. et al. Quantification of electron accumulation at grain boundaries in perovskite polycrystalline films by correlative infrared-spectroscopic nanoimaging and Kelvin probe force microscopy.Light. Sci. Appl.10, 84 (2021)..
Pockett, A. et al. Characterization of planar lead halide perovskite solar cells by impedance spectroscopy, open-circuit photovoltage decay, and intensity-modulated photovoltage/photocurrent spectroscopy.J. Phys. Chem. C119, 3456–3465 (2015)..
Zhao, Y. C. et al. Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications.Light. Sci. Appl.6, e16243 (2017)..
Shockley, W.&Read, W. T. Jr. Statistics of the recombinations of holes and electrons.Phys. Rev. J. Arch.87, 835–842 (1952)..
Manser, J. S.&Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites.Nat. Photonics8, 737–743 (2014)..
Johnston, M. B.&Herz, L. M. Hybrid perovskites for photovoltaics: charge-carrier recombination, diffusion, and radiative efficiencies.Acc. Chem. Res.49, 146–154 (2016)..
Rehman, W. et al. Charge-carrier dynamics and mobilities in formamidinium lead mixed-halide perovskites.Adv. Mater.27, 7938–7944 (2015)..
Yang, Y. et al. Observation of a hot-phonon bottleneck in lead-iodide perovskites.Nat. Photonics10, 53–59 (2016)..
Fu, J. H. et al. Hot carrier cooling mechanisms in halide perovskites.Nat. Commun.8, 1300 (2017)..
Price, M. B. et al. Hot-carrier cooling and photoinduced refractive index changes in organic-inorganic lead halide perovskites.Nat. Commun.6, 8420 (2015)..
Ma, X. C. et al. Energy transfer in plasmonic photocatalytic composites.Light. Sci. Appl.5, e16017 (2016)..
Li, J. T. et al. Plasmon-induced resonance energy transfer for solar energy conversion.Nat. Photonics9, 601–607 (2015)..
Sergeev, A. A. et al. Tailoring spontaneous infrared emission of HgTe quantum dots with laser-printed plasmonic arrays.Light. Sci. Appl.9, 16 (2020)..
Jia, C. C. et al. Interface-engineered plasmonics in metal/semiconductor heterostructures.Adv. Energy Mater.6, 1600431 (2016)..
Häkkinen, H., Barnett, R. N.&Landman, U. Electronic structure of passivated Au38(SCH3)24nanocrystal.Phys. Rev. Lett.82, 3264–3267 (1999)..
Hu, C. Y. et al. Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions.J. Am. Chem. Soc.141, 7807–7814 (2019)..
Sherkar, T. S. et al. Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions.ACS Energy Lett.2, 1214–1222 (2017)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构