1.Institute of Physics, University of Graz, NAWI Graz, Universitätsplatz 5, 8010 Graz, Austria
2.Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
3.Institute of Optics, Information and Photonics, University Erlangen-Nuremberg, Staudtstr. 7/B2, 91058 Erlangen, Germany
Peter Banzer (peter.banzer@uni-graz.at)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-02,
收稿日期:2021-08-09,
修回日期:2021-10-08,
录用日期:2021-10-14
Scan QR Code
Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer[J]. LSA, 2021,10(12):2342-2348.
Eismann, J. S. et al. Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer. Light: Science & Applications, 10, 2342-2348 (2019).
Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer[J]. LSA, 2021,10(12):2342-2348. DOI: 10.1038/s41377-021-00663-x.
Eismann, J. S. et al. Absolute characterization of high numerical aperture microscope objectives utilizing a dipole scatterer. Light: Science & Applications, 10, 2342-2348 (2019). DOI: 10.1038/s41377-021-00663-x.
Measuring the aberrations of optical systems is an essential step in the fabrication of high precision optical components. Such a characterization is usually based on comparing the device under investigation with a calibrated reference object. However
when working at the cutting-edge of technology
it is increasingly difficult to provide an even better or well-known reference device. In this manuscript we present a method for the characterization of high numerical aperture microscope objectives
functioning without the need of calibrated reference optics. The technique constitutes a nanoparticle
acting as a dipole-like scatterer
that is placed in the focal volume of the microscope objective. The light that is scattered by the particle can be measured individually and serves as the reference wave in our system. Utilizing the well-characterized scattered light as nearly perfect reference wave is the main idea behind this manuscript.
Kingslake, R. The measurement of the aberrations of a microscope objective.J. Opt. Soc. Am.26, 251–256 (1936)..
Török, P.&Kao, F. J.Optical Imaging and Microscopy2nd edn (Springer, 2007).
Bohren, C. F.&Huffman, D. R.Absorption and Scattering of Light by Small Particles(John Wiley&Sons, 1998).
Lieb, M. A., Zavislan, J. M.&Novotny, L. Single-molecule orientations determined by direct emission pattern imaging.J. Opt. Soc. Am. B21, 1210–1215 (2004)..
Eismann, J. S., Neugebauer, M.&Banzer, P. Exciting a chiral dipole moment in an achiral nanostructure.Optica5, 954–959 (2018)..
Pfund, J. et al. Absolute sphericity measurement: a comparative study of the use of interferometry and a Shack–Hartmann sensor.Opt. Lett.23, 742–744 (1998)..
Platt, B. C.&Shack, R. History and principles of Shack−Hartmann wavefront sensing.J. Refract. Surg.17, S573–S577 (2001)..
Mick, U. et al. AFM-based pick-and-place handling of individual nanoparticles inside an SEM for the fabrication of plasmonic nano-patterns. InCLEO 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1H. 1.
Novotny, L.&Hecht, B.Principles of Nano-Optics2nd edn (Cambridge University Press, 2006).
Neugebauer, M. et al. Magnetic and electric transverse spin density of spatially confined light.Phys. Rev. X8, 021042 (2018)..
Hariharan, P.Basics of Interferometry(Academic Press, 1992).
Zernike, F.&Stratton, F. J. M. Diffraction theory of the knife-edge test and its improved form, the phase-contrast method.Monthly Not. R. Astron. Soc.94, 377–384 (1934)..
Lakshminarayanan, V.&Fleck, A. Zernike polynomials: a guide.J. Mod. Opt.58, 545–561 (2011)..
Evlyukhin, A. B., Reinhardt, C.&Chichkov, B. N. Multipole light scattering by nonspherical nanoparticles in the discrete dipole approximation.Phys. Rev. B84, 235429 (2011)..
Van De Groep, J.&Polman, A. Designing dielectric resonators on substrates: combining magnetic and electric resonances.Opt. Express21, 26285–26302 (2013)..
Olson, J. et al. Optical characterization of single plasmonic nanoparticles.Chem. Soc. Rev.44, 40–57 (2015)..
Neugebauer, M. et al. Polarization-controlled directional scattering for nanoscopic position sensing.Nat. Commun.7, 11286 (2016)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构