1.Institute of Microscale Optoelectronics, Shenzhen University, 518060 Shenzhen, China
2.Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, 510006 Guangzhou, China
Ying Li (queenly@szu.edu.cn)
Xiaocong Yuan (xcyuan@szu.edu.cn)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-02,
收稿日期:2021-06-10,
修回日期:2021-10-18,
录用日期:2021-10-18
Scan QR Code
Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. LSA, 2021,10(12):2360-2368.
Chen, S. Q. et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light: Science & Applications, 10, 2360-2368 (2021).
Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control[J]. LSA, 2021,10(12):2360-2368. DOI: 10.1038/s41377-021-00667-7.
Chen, S. Q. et al. Cylindrical vector beam multiplexer/demultiplexer using off-axis polarization control. Light: Science & Applications, 10, 2360-2368 (2021). DOI: 10.1038/s41377-021-00667-7.
The emergence of cylindrical vector beam (CVB) multiplexing has opened new avenues for high-capacity optical communication. Although several configurations have been developed to couple/separate CVBs
the CVB multiplexer/demultiplexer remains elusive due to lack of effective off-axis polarization control technologies. Here we report a straightforward approach to realize off-axis polarization control for CVB multiplexing/demultiplexing based on a metal–dielectric–metal metasurface. We show that the left- and right-handed circularly polarized (LHCP/RHCP) components of CVBs are independently modulated via spin-to-orbit interactions by the properly designed metasurface
and then simultaneously multiplexed and demultiplexed due to the reversibility of light path and the conservation of vector mode. We also show that the proposed multiplexers/demultiplexers are broadband (from 1310 to 1625 nm) and compatible with wavelength-division-multiplexing. As a proof of concept
we successfully demonstrate a four-channel CVB multiplexing communication
combining wavelength-division-multiplexing and polarization-division-multiplexing with a transmission rate of 1.56 Tbit/s and a bit-error-rate of 10
−6
at the receive power of −21.6 dBm. This study paves the way for CVB multiplexing/demultiplexing and may benefit high-capacity CVB communication.
Richardson, D. J., Fini, J. M.&Nelson, L. E. Space-division multiplexing in optical fibres.Nat. Photonics7, 354–362 (2013)..
Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing.Nat. Photonics6, 488–496 (2012)..
Luo, L. W. et al. WDM-compatible mode-division multiplexing on a silicon chip.Nat. Commun.5, 3069 (2014)..
Zhu, B. et al. 112-Tb/s Space-division multiplexed DWDM transmission with 14-b/s/Hz aggregate spectral efficiency over a 76.8-km seven-core fiber.Opt. Express19, 16665–16671 (2011)..
Huang, H. et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength.Opt. Lett.39, 197–200 (2014)..
Zhang, J. W. et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber.Photonics Res.8, 1236–1242 (2020)..
Winzer, P. J. High-spectral-efficiency optical modulation formats.J. Lightwave Technol.30, 3824–3835 (2012)..
Chen, Z. Y. et al. Use of polarization freedom beyond polarization-division multiplexing to support high-speed and spectral-efficient data transmission.Light. Sci. Appl.6, e16207 (2017)..
Xu, H. X. et al. Spin-encoded wavelength-direction multitasking Janus metasurfaces.Adv. Optical Mater.9, 2100190 (2021)..
Deng, L. G. et al. Malus-metasurface-assisted polarization multiplexing.Light. Sci. Appl.9, 101 (2020)..
Li, J. Q. et al. Wearable conformal metasurfaces for polarization division multiplexing.Adv. Optical Mater.8, 2000068 (2020)..
Wang, J., He, S. L.&Dai, D. X. On-chip silicon 8-channel hybrid (de)multiplexer enabling simultaneous mode- and polarization-division-multiplexing.Laser Photonics Rev.8, L18–L22 (2014)..
Wang, C. F. et al. Cylindrical vector beam multiplexing for radio-over-fiber communication with dielectric metasurfaces.Opt. Express28, 38666–38681 (2020)..
He, Y. L. et al. All-optical signal processing in structured light multiplexing with dielectric meta-optics.ACS Photonics7, 135–146 (2020)..
Liu, J. et al. Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters.Light. Sci. Appl.7, 17148 (2018)..
Nazemosadat, E. et al. Dielectric broadband metasurfaces for fiber mode-multiplexed communications.Adv. Optical Mater.7, 1801679 (2019)..
Parigi, V. et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory.Nat. Commun.6, 7706 (2015)..
Qiao, W. et al. Approach to multiplexing fiber communication with cylindrical vector beams.Opt. Lett.42, 2579–2582 (2017)..
Ndagano, B. et al. Fiber propagation of vector modes.Opt. Express23, 17330–17336 (2015)..
Cheng, W., Haus, J. W.&Zhan, Q. W. Propagation of vector vortex beams through a turbulent atmosphere.Opt. Express17, 17829–17836 (2009)..
Zhu, Z. Y. et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams.Nat. Commun.12, 1666 (2021)..
Willner, A. E. Vector-mode multiplexing brings an additional approach for capacity growth in optical fibers.Light. Sci. Appl.7, 18002 (2018)..
Shu, W. X. et al. Polarization evolution of vector beams generated by q-plates.Photonics Res.5, 64–72 (2017)..
Milione, G. et al. 4 × 20 Gbit/s mode division multiplexing over free space using vector modes and a q-plate mode (de)multiplexer.Opt. Lett.40, 1980–1983 (2015)..
Yang, Y. J. et al. Optical trapping with structured light: a review.Adv. Photonics3, 034001 (2021)..
Milione, G. et al. Higher order pancharatnam-berry phase and the angular momentum of light.Phys. Rev. Lett.108, 190401 (2012)..
Forbes, A., Dudley, A.&McLaren, M. Creation and detection of optical modes with spatial light modulators.Adv. Opt. Photonics8, 200–227 (2016)..
Zheng, S. Q. et al. Improve polarization topological order sorting with the diffractive splitting method.Opt. Lett.44, 795–798 (2019)..
Fang, J. C. et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication.ACS Photonics5, 3478–3484 (2018)..
Berkhout, G. C. G. et al. Efficient sorting of orbital angular momentum states of light.Phys. Rev. Lett.105, 153601 (2010)..
Wen, Y. H. et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes.Phys. Rev. Lett.120, 193904 (2018)..
Wen, Y. H. et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems.Optica7, 254–262 (2020)..
Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings.Light. Sci. Appl.4, e257 (2015)..
Yue, F. Y. et al. Multichannel polarization-controllable superpositions of orbital angular momentum states.Adv. Mater.29, 1603838 (2017)..
Li, Y. et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface.Adv. Optical Mater.5, 1600502 (2017)..
Tan, H. Y. et al. A free-space orbital angular momentum multiplexing communication system based on a metasurface.Laser Photonics Rev.13, 1800278 (2019)..
Arbabi, A. et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission.Nat. Nanotechnol.10, 937–943 (2015)..
Wen, D. D. et al. Geometric metasurfaces for ultrathin optical devices.Adv. Optical Mater.6, 1800348 (2018)..
Chen, S. M. et al. High-order nonlinear spin–orbit interaction on plasmonic metasurfaces.Nano Lett.20, 8549–8555 (2020)..
Mueller, J. P. B. et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization.Phys. Rev. Lett.118, 113901 (2017)..
Guo, Y. H. et al. Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation.Light. Sci. Appl.10, 63 (2021)..
Devlin, R. C. et al. Arbitrary spin-to–orbital angular momentum conversion of light.Science358, 896–901 (2017)..
Chen, J., Wan, C. H.&Zhan, Q. W. Vectorial optical fields: recent advances and future prospects.Sci. Bull.63, 54–74 (2018)..
Zhan, Q. W. Cylindrical vector beams: from mathematical concepts to applications.Adv. Opt. Photonics1, 1–57 (2009)..
Yi, X. N. et al. Generation of cylindrical vector vortex beams by two cascaded metasurfaces.Opt. Express22, 17207–17215 (2014)..
He, Y. L. et al. Controllable photonic spin Hall effect with phase function construction.Photonics Res.8, 963–971 (2020)..
Li, S. Q. et al. Efficient optical angular momentum manipulation for compact multiplexing and demultiplexing using a dielectric metasurface.Adv. Optical Mater.8, 1901666 (2020)..
Zhang, J. J., Pendry, J. B.&Luo, Y. Transformation optics from macroscopic to nanoscale regimes: a review.Adv. Photonics1, 014001 (2019)..
Sain, B., Meier, C.&Zentgraf, T. Nonlinear optics in all-dielectric nanoantennas and metasurfaces: a review.Adv. Photonics1, 024002 (2019)..
Fu, Y. N. et al. Measuring phase and polarization singularities of light using spin-multiplexing metasurfaces.Nanoscale11, 18303–18310 (2019)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构