1.Department of Physics, University College Cork, Cork, Ireland
2.Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
3.Centre for Advanced Photonics & Process Analysis, Munster Technological University, Bishopstown, Cork T12 P928, Ireland
4.National Research University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, St. Petersburg 197101, Russia
Bryan Kelleher (bryan.kelleher@ucc.ie)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-29,
收稿日期:2021-02-15,
修回日期:2021-09-03,
录用日期:2021-10-21
Scan QR Code
Optical information processing using dual state quantum dot lasers: complexity through simplicity[J]. LSA, 2021,10(12):2307-2321.
Kelleher, B., Dillane, M. & Viktorov, E. A. Optical information processing using dual state quantum dot lasers: complexity through simplicity. Light: Science & Applications, 10, 2307-2321 (2021).
Optical information processing using dual state quantum dot lasers: complexity through simplicity[J]. LSA, 2021,10(12):2307-2321. DOI: 10.1038/s41377-021-00670-y.
Kelleher, B., Dillane, M. & Viktorov, E. A. Optical information processing using dual state quantum dot lasers: complexity through simplicity. Light: Science & Applications, 10, 2307-2321 (2021). DOI: 10.1038/s41377-021-00670-y.
We review results on the optical injection of dual state InAs quantum dot-based semiconductor lasers. The two states in question are the so-called ground state and first excited state of the laser. This ability to lase from two different energy states is unique amongst semiconductor lasers and in combination with the high
intrinsic relaxation oscillation damping of the material and the novel
inherent cascade like carrier relaxation process
endows optically injected dual state quantum dot lasers with many unique dynamical properties. Particular attention is paid to fast state switching
antiphase excitability
novel information processing techniques and optothermally induced neuronal phenomena. We compare and contrast some of the physical properties of the system with other optically injected two state devices such as vertical cavity surface emitting lasers and ring lasers. Finally
we offer an outlook on the use of quantum dot material in photonic integrated circuits.
Arakawa, Y.&Sakaki, H. Multidimensional quantum well laser and temperature dependence of its threshold current.Appl. Phys. Lett.40, 939–941 (1982)..
Bimberg, D. et al. InGaAs-GaAs quantum-dot lasers.IEEE J. Sel. Top. Quantum Electron.3, 196–205 (1997)..
Liu, G. T. et al. Extremely low room-temperature threshold current density diode lasers using InAs dots in In0.15Ga0.85As quantum well.Electron. Lett.35, 1163–1165 (1999)..
Ellis, B. et al. Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser.Nat. Photonics5, 297–300 (2011)..
Mikhrin, S. S. et al. High power temperature-insensitive 1.3 µm InAs/InGaAs/GaAs quantum dot lasers.Semiconductor Sci. Technol.20, 340–342 (2005)..
Norman, J. C.et al. The importance of p-doping for quantum dot laser on silicon performance.IEEE J. Quantum Electron.55, 2001111 (2019)..
Lüdge, K.&Schuster, H. G. Nonlinear Laser Dynamics: from Quantum Dots to Cryptography. (Weinheim: Wiley, 2012).
O'Brien, D. et al. Sensitivity of quantum-dot semiconductor lasers to optical feedback.Opt. Lett.29, 1072–1074 (2004)..
Duan, J. N. et al. 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon.IEEE Photonics Technol. Lett.31, 345–348 (2019)..
Duan, J. et al. Dynamic and nonlinear properties of epitaxial quantum dot lasers on silicon for isolator-free integration.Photonics Res.7, 1222–1228 (2019)..
Mizutani, K.et al. Isolator free optical I/O core transmitter by using quantum dot laser. Proceedings of the IEEE 12th International Conference on Group IV Photonics (GFP). Vancouver, BC, Canada: IEEE, 2015, 177-178.
Kelleher, B. et al. Excitability in optically injected semiconductor lasers: contrasting quantum- well- and quantum-dot-based devices.Phys. Rev. E83, 026207 (2011)..
Kelleher, B., Hegarty, S. P.&Huyet, G. Optically injected lasers: the transition from class B to class A lasers.Phys. Rev. E86, 066206 (2012)..
Lingnau, B. et al. Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis.N. J. Phys.15, 093031 (2013)..
Otto, C., Lüdge, K.&Schöll, E. Modeling quantum dot lasers with optical feedback: sensitivity of bifurcation scenarios.Phys. Status Solidi (B)247, 829–845 (2010)..
Kelleher, B.et al. Optically injected single-mode quantum dot lasers. in Quantum Dot Devices (ed Wang, Z. M. )(New York: Springer, 2012), 1-22.
Kelleher, B. et al. Excitable phase slips in an injection-locked single-mode quantum-dot laser.Opt. Lett.34, 440–442 (2009)..
Dillane, M. et al. Neuromorphic dynamics with optically injected quantum dot lasers.Eur. Phys. J. B92, 197 (2019)..
Erneux, T. et al. Optically injected quantum-dot lasers.Opt. Lett.35, 937–939 (2010)..
Goulding, D. et al. Excitability in a quantum dot semiconductor laser with optical injection.Phys. Rev. Lett.98, 153903 (2007)..
Dillane, M. et al. Square wave excitability in quantum dot lasers under optical injection.Opt. Lett.44, 347–350 (2019)..
Kelleher, B. et al. Two-color bursting oscillations.Sci. Rep.7, 8414 (2017)..
Hegarty, S. P. et al. Phase-locked mutually coupled 1.3 μm quantum-dot lasers.Opt. Lett.32, 3245–3247 (2007)..
Grundmann, M.&Bimberg, D. Theory of random population for quantum dots.Phys. Rev. B55, 9740–9745 (1997)..
Markus, A. et al. Simultaneous two-state lasing in quantum-dot lasers.Appl. Phys. Lett.82, 1818–1820 (2003)..
Markus, A. et al. Impact of intraband relaxation on the performance of a quantum-dot laser.IEEE J. Sel. Top. Quantum Electron.9, 1308–1314 (2003)..
Viktorov, E. A. et al. Electron-hole asymmetry and two-state lasing in quantum dot lasers.Appl. Phys. Lett.87, 053113 (2005)..
Wang, H. Y. et al. Wavelength switching transition in quantum dot lasers.Appl. Phys. Lett.90, 081112 (2007)..
Lüdge, K.&Schöll, E. Temperature dependent two-state lasing in quantum dot lasers. Proceedings of the 5th Rio De La Plata Workshop on Laser Dynamics and Nonlinear Photonics. Colonia del Sacramento, Uruguay: IEEE, 2011.
Zhukov, A. E. et al. Features of simultaneous ground- and excited-state lasing in quantum dot lasers.Semiconductors46, 231–235 (2012)..
Röhm, A., Lingnau, B.&Lüdge, K. Understanding ground-state quenching in quantum-dot lasers.IEEE J. Quantum Electron.51, 2000211 (2015)..
Dillane, M. et al. Asymmetric excitable phase triggering in an optically injected semiconductor laser.Opt. Lett.46, 440–443 (2021)..
Norman, J. C. et al. Perspective: the future of quantum dot photonic integrated circuits.APL Photonics3, 030901 (2018)..
Mori, T., Sato, Y.&Kawaguchi, H. 10-Gb/s optical buffer memory using a polarization bistable VCSEL.IEICE Trans. Electron.E92. C, 957–963 (2009)..
Kawaguchi, H. Bistabilities and Nonlinearities in Laser Diodes. (Boston: Artech House, 1994).
Ishii, S.&Baba, T. Bistable lasing in twin microdisk photonic molecules.Appl. Phys. Lett.87, 181102 (2005)..
Raburn, M. et al. Integrable multimode interference distributed Bragg reflector laser all-optical flip-flops.IEEE Photonics Technol. Lett.18, 1421–1423 (2006)..
Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers.Nature432, 206–209 (2004)..
Zhukovsky, S. V. et al. Switchable lasing in multimode microcavities.Phys. Rev. Lett.99, 073902 (2007)..
Kawaguchi, H. Recent progress in polarization-bistable vcsels and their applications to all-optical signal processing. in Advanced Lasers: Laser Physics and Technology for Applied and Fundamental Science. (ed Shulika, O.&Sukhoivanov, I. ) (Dordrecht: Springer, 2015), 1–17.
Pan, Z. G. et al. Optical injection induced polarization bistability in vertical‐cavity surface‐emitting lasers.Appl. Phys. Lett.63, 2999–3001 (1993)..
Gatare, I. et al. Polarization switching bistability and dynamics in vertical-cavity surface-emitting laser under orthogonal optical injection.Optical Quantum Electron.38, 429–443 (2006)..
Valle, A., Gomez-Molina, M.&Pesquera, L. Polarization bistability in 1550 nm wavelength single-mode vertical-cavity surface-emitting lasers subject to orthogonal optical injection.IEEE J. Sel. Top. Quantum Electron.14, 895–902 (2008)..
Hurtado, A., Henning, I. D.&Adams, M. J. Different forms of wavelength polarization switching and bistability in a 1.55 μm vertical-cavity surface-emitting laser under orthogonally polarized optical injection.Opt. Lett.34, 365–367 (2009)..
Hurtado, A. et al. Two-wavelength switching with a 1310-nm quantum dot distributed feedback laser.IEEE J. Sel. Top. Quantum Electron.19, 1900708 (2013)..
Hurtado, A.&Javaloyes, J. Controllable spiking patterns in long-wavelength vertical cavity surface emitting lasers for neuromorphic photonics systems.Appl. Phys. Lett.107, 241103 (2015)..
Pérez, T. et al. Bistability and all-optical switching in semiconductor ring lasers.Opt. Express15, 12941–12948 (2007)..
Gelens, L. et al. Phase-space approach to directional switching in semiconductor ring lasers.Phys. Rev. E79, 016213 (2009)..
Chen, C. H. et al. All-optical memory based on injection-locking bistability in photonic crystal lasers.Opt. Express19, 3387–3395 (2011)..
Osborne, S. et al. All-optical memory based on the injection locking bistability of a two-color laser diode.Opt. Express17, 6293–6300 (2009)..
Osborne, S. et al. Design of single-mode and two-color Fabry–PÉrot lasers with patterned refractive index.IEEE J. Sel. Top. Quantum Electron.13, 1157–1163 (2007)..
Dehghaninejad, A., Sheikhey, M. M.&Baghban, H. Dynamic behavior of injection-locked two-state quantum dot lasers.J. Optical Soc. Am. B36, 1518–1524 (2019)..
Olejniczak, L. et al. Intrinsic gain switching in optically injected quantum dot laser lasing simultaneously from the ground and excited state.J. Optical Soc. Am. B27, 2416–2423 (2010)..
Viktorov, E. A. et al. Low-frequency fluctuations in two-state quantum dot lasers.Opt. Lett.31, 2302–2304 (2006)..
Naderi, N. A. et al. Two-color multi-section quantum dot distributed feedback laser.Opt. Express18, 27028–27035 (2010)..
Grillot, F. et al. A dual-mode quantum dot laser operating in the excited state.Appl. Phys. Lett.99, 231110 (2011)..
Virte, M., Panajotov, K.&Sciamanna, M. Mode competition induced by optical feedback in two-color quantum dot lasers.IEEE J. Quantum Electron.49, 578–585 (2013)..
Virte, M. et al. Switching between ground and excited states by optical feedback in a quantum dot laser diode.Appl. Phys. Lett.105, 121109 (2014)..
Virte, M. et al. Energy exchange between modes in a multimode two-color quantum dot laser with optical feedback.Opt. Lett.41, 3205–3208 (2016)..
Huang, H. et al. Multimode optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting on different lasing states.AIP Adv.6, 125114 (2016)..
Pawlus, R., Breuer, S.&Virte, M. Relative intensity noise reduction in a dual-state quantum-dot laser by optical feedback.Opt. Lett.42, 4259–4262 (2017)..
Huang, H. M. et al. Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes.Opt. Express26, 1743–1751 (2018)..
Lin, L. C. et al. Comparison of optical feedback dynamics of InAs/GaAs quantum-dot lasers emitting solely on ground or excited states.Opt. Lett.43, 210–213 (2018)..
Meinecke, S. et al. Optical feedback induced oscillation bursts in two-state quantum-dot lasers.Opt. Express28, 3361–3377 (2020)..
Kim, J., Choi, M. T.&Delfyett, P. J. Pulse generation and compression via ground and excited states from a grating coupled passively mode-locked quantum dot two-section diode laser.Appl. Phys. Lett.89, 261106 (2006)..
Cataluna, M. A. et al. Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser.Appl. Phys. Lett.89, 081124 (2006)..
Cataluna, M. A. et al. Dual-wavelength mode-locked quantum-dot laser, via ground and excited state transitions: experimental and theoretical investigation.Opt. Express18, 12832–12838 (2010)..
Breuer, S. et al. Reverse-emission-state-transition mode locking of a two-section InAs/InGaAs quantum dot laser.Appl. Phys. Lett.97, 071118 (2010)..
Breuer, S., Elsäßer, W.&Hopkinson, M. State-switched modelocking of two-segment quantum dot laser via self-electro-optical quantum dot absorber.Electron. Lett.46, 161–162 (2010)..
Breuer, S. et al. Joint experimental and theoretical investigations of two-state mode locking in a strongly chirped reverse-biased monolithic quantum dot laser.IEEE J. Quantum Electron.47, 1320–1329 (2011)..
Mesaritakis, C. et al. Effect of the number of quantum dot layers and dual state emission on the performance of InAs/InGaAs passively mode-locked lasers.Appl. Phys. Lett.101, 251115 (2012)..
Xu, T. H. et al. Simulation and analysis of dynamic regimes involving ground and excited state transitions in quantum dot passively mode-locked lasers.IEEE J. Quantum Electron.48, 1193–1202 (2012)..
Mesaritakis, C. et al. Artificial neuron based on integrated semiconductor quantum dot mode-locked lasers.Sci. Rep.6, 39317 (2016)..
Xu, P. F. et al. Temperature-dependent modulation characteristics for 1.3 μm InAs/GaAs quantum dot lasers.J. Appl. Phys.107, 013102 (2010)..
Bhattacharya, P. et al. High-speed modulation and switching characteristics of In(Ga)As-Al(Ga)As self-organized quantum-dot lasers.IEEE J. Sel. Top. Quantum Electron.6, 426–438 (2000)..
Röhm, A., Lingnau, B.&Lüdge, K. Ground-state modulation-enhancement by two-state lasing in quantum-dot laser devices.Appl. Phys. Lett.106, 191102 (2015)..
Wang, C. et al. Phase-amplitude coupling characteristics in directly modulated quantum dot lasers.Appl. Phys. Lett.105, 221114 (2014)..
Wang, C., Grillot, F.&Even, J. Impacts of wetting layer and excited state on the modulation response of quantum-dot lasers.IEEE J. Quantum Electron.48, 1144–1150 (2012)..
Lv, Z. R. et al. Dynamic characteristics of two-state lasing quantum dot lasers under large signal modulation.AIP Adv.5, 107115 (2015)..
Tykalewicz, B. et al. All-optical switching with a dual-state, single-section quantum dot laser via optical injection.Opt. Lett.39, 4607–4610 (2014)..
Tykalewicz, B. et al. Optically induced hysteresis in a two-state quantum dot laser.Opt. Lett.41, 1034–1037 (2016)..
Wang, C. et al. Enhanced dynamic performance of quantum dot semiconductor lasers operating on the excited state.IEEE J. Quantum Electron.50, 1–9 (2014)..
Meinecke, S. et al. Stability of optically injected two-state quantum-dot lasers.Ann. der Phys.529, 1600279 (2017)..
Meinecke, S., Lingnau, B.&Lüdge, K. Increasing stability by two-state lasing in quantum-dot lasers with optical injection. Proceedings of 10098, Physics and Simulation of Optoelectronic Devices XXV. San Francisco, California, United States: SPIE, 2017, 67-77.
Pausch, J. et al. Optically injected quantum dot lasers: impact of nonlinear carrier lifetimes on frequency-locking dynamics.N. J. Phys.14, 053018 (2012)..
Lingnau, B. et al. Failure of the α factor in describing dynamical instabilities and chaos in quantum-dot lasers.Phys. Rev. E86, 065201(R) (2012)..
Goulding, D. P. Non-linear dynamics of optically in-jected quantum dot lasers, Ph. D. thesis (2011)
Viktorov, E. A. et al. Injection-induced, tunable all-optical gating in a two-state quantum dot laser.Opt. Lett.41, 3555–3558 (2016)..
Dillane, M. et al. Excitable interplay between lasing quantum dot states.Phys. Rev. E100, 012202 (2019)..
Sarantoglou, G., Skontranis, M.&Mesaritakis, C. All optical integrate and fire neuromorphic node based on single section quantum dot laser.IEEE J. Sel. Top. Quantum Electron.26, 1900310 (2020)..
Lindner, B. et al. Effects of noise in excitable systems.Phys. Rep.392, 321–424 (2004)..
Kelleher, B. et al. Bounded phase phenomena in the optically injected laser.Phys. Rev. E85, 046212 (2012)..
Thévenin, J. et al. Resonance assisted synchronization of coupled oscillators: frequency locking without phase locking.Phys. Rev. Lett.107, 104101 (2011)..
Prucnal, P. R. et al. Recent progress in semiconductor excitable lasers for photonic spike processing.Adv. Opt. Photonics8, 228–299 (2016)..
Garbin, B. et al. Refractory period of an excitable semiconductor laser with optical injection.Phys. Rev. E95, 012214 (2017)..
Turconi, M. et al. Control of excitable pulses in an injection-locked semiconductor laser.Phys. Rev. E88, 022923 (2013)..
Garbin, B. et al. Incoherent optical triggering of excitable pulses in an injection-locked semiconductor laser.Opt. Lett.39, 1254–1257 (2014)..
Desroches, M. et al. Mixed-mode oscillations with multiple time scales.SIAM Rev.54, 211–288 (2012)..
Arecchi, F. et al. Deterministic chaos in laser with injected signal.Opt. Commun.51, 308–314 (1984)..
Lingnau, B. et al. Dynamics of on-chip asymmetrically coupled semiconductor lasers.Opt. Lett.45, 2223–2226 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构