i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica, Portugal
M Alexandre (m.alexandre@campus.fct.unl.pt)
M J. Mendes (mj.mendes@fct.unl.pt)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-17,
收稿日期:2021-01-25,
修回日期:2021-10-15,
录用日期:2021-10-25
Scan QR Code
Light management with quantum nanostructured dots-in-host semiconductors[J]. LSA, 2021,10(12):2399-2407.
Alexandre, M. et al. Light management with quantum nanostructured dots-in-host semiconductors. Light: Science & Applications, 10, 2399-2407 (2021).
Light management with quantum nanostructured dots-in-host semiconductors[J]. LSA, 2021,10(12):2399-2407. DOI: 10.1038/s41377-021-00671-x.
Alexandre, M. et al. Light management with quantum nanostructured dots-in-host semiconductors. Light: Science & Applications, 10, 2399-2407 (2021). DOI: 10.1038/s41377-021-00671-x.
Insightful knowledge on quantum nanostructured materials is paramount to engineer and exploit their vast gamut of applications. Here
a formalism based on the single-band effective mass equation was developed to determine the light absorption of colloidal quantum dots (CQDs) embedded in a wider bandgap semiconductor host
employing only three parameters (dots/host potential barrier
effective mass
and QD size). It was ascertained how to tune such parameters to design the energy level structure and consequent optical response. Our findings show that the CQD size has the biggest effect on the number and energy of the confined levels
while the potential barrier causes a linear shift of their values. While smaller QDs allow wider energetic separation between levels (as desired for most quantum-based technologies)
the larger dots with higher number of levels are those that exhibit the strongest absorption. Nevertheless
it was unprecedently shown that such quantum-enabled absorption coefficients can reach the levels (10
4
–10
5
cm
−1
) of bulk semiconductors.
Kroupa, D. M. et al. Tuning colloidal quantum dot band edge positions through solution-phase surface chemistry modification.Nat. Commun.8, 15257 (2017)..
Ning, Z. J. et al. Quantum-dot-in-perovskite solids.Nature523, 324–328 (2015)..
Shirasaki, Y. et al. Emergence of colloidal quantum-dot light-emitting technologies.Nat. Photonics7, 13–23 (2013)..
Supran, G. J. et al. High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots.Adv. Mater.27, 1437–1442 (2015)..
Gong, X. W. et al. Highly efficient quantum dot near-infrared light-emitting diodes.Nat. Photonics10, 253–257 (2016)..
Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite.Nat. Photonics14, 227–233 (2020)..
Sargent, E. H. Infrared quantum dots.Adv. Mater.17, 515–522 (2005)..
Kim, T. et al. Efficiency limit of colloidal quantum dot solar cells: effect of optical interference on active layer absorption.ACS Energy Lett.5, 248–251 (2020)..
Mendes, M. J. et al. Self-organized colloidal quantum dots and metal nanoparticles for Plasmon-enhanced intermediate-band solar cells.Nanotechnology24, 345402 (2013)..
Mendes, M. J. et al. Plasmonic light enhancement in the near-field of metallic nanospheroids for application in intermediate band solar cells.Appl. Phys. Lett.95, 071105 (2009)..
Han, J. H. et al. Hybrid PbS quantum-dot-in-perovskite for high-efficiency perovskite solar cell.Small14, 1801016 (2018)..
Jeong, K. S. et al. Enhanced mobility-lifetime products in PbS colloidal quantum dot photovoltaics.ACS Nano6, 89–99 (2012)..
Alexandre,M. et al. Optimum luminescent down-shifting properties for high efficiency and stable perovskite solar cells.ACS Appl. Energy Mater.2, 2930–2938 (2019)..
Liu, N. et al. ZnSe/ZnS core-shell quantum dots incorporated with Ag nanoparticles as luminescent down-shifting layers to enhance the efficiency of Si solar cells.J. Alloys Compound.747, 696–702 (2018)..
Pawar, R. S., Upadhaya, P. G.&Patravale, V. B. InHandbook of Nanomaterials for Industrial Applications(ed. Hussain, C. M. ) 621–637 (Elsevier, 2018).
Loss, D.&DiVincenzo, D. P. Quantum computation with quantum dots.Phys. Rev. A57, 120–126 (1998)..
Haque, S. et al. Design of wave-optical structured substrates for ultra-thin perovskite solar cells.Appl. Mater. Today20, 100720 (2020)..
Mendes, M. J. et al. Design of optimized wave-opticalspheroidal nanostructures for photonic-enhanced solar cells.Nano Energy26, 286–296 (2016)..
Centeno, P. et al. Self‐cleaned photonic-enhanced solar cells with nanostructured parylene‐C.Adv. Mater. Interfaces7, 2000264 (2020)..
Li, K. Z. et al. Light trapping in solar cells: simple design rules to maximize absorption.Optica7, 1377–1384 (2020)..
Luque, A. et al. Intraband absorption for normal illumination in quantum dot intermediate band solar cells.Sol. Energy Mater. Sol. Cells94, 2032–2035 (2010)..
Luque, A.&Mellor, A. V.Photon Absorption Models in Nanostructured Semiconductor Solar Cells and Devices(Springer, 2015).
Ngo, T. T.&Mora-Seró, I. Interaction between colloidal quantum dots and halide perovskites: looking for constructive synergies.J. Phys. Chem. Lett.10, 1099–1108 (2019)..
Ramiro, I.&Martí, A. Intermediate band solar cells: present and future.Prog. Photovolt. Res. Appl.29, 705–713 (2020)..
Okada, Y. et al. Intermediate band solar cells: recent progress and future directions.Appl. Phys. Rev.2, 021302 (2015)..
Luque, A. et al. New Hamiltonian for a better understanding of the quantum dot intermediate band solar cells.Sol. Energy Mater. Sol. Cells95, 2095–2101 (2011)..
Nanda, K. K. et al. Band-gap tuning of PbS nanoparticles by in-flightsintering of size classified aerosols.J. Appl. Phys.91, 2315–2321 (2002)..
Scanlon, W. W. Recent advances in the optical and electronic properties of PbS, PbSe, PbTe and their alloys.J. Phys. Chem. Solids8, 423–428 (1959)..
Phillips, L. J. et al. Dispersion relation data for methylammonium lead triiodide perovskite deposited on a (100) silicon wafer using a two-step vapour-phase reaction process.Data Brief5, 926–928 (2015)..
Brenner, T. M. et al. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties.Nat. Rev. Mater.1, 15007 (2016)..
Chapa, M. et al. All-thin-film perovskite/C–Si four-terminal tandems: interlayer and intermediate contacts optimization.ACS Appl. Energy Mater.2, 3979–3985 (2019)..
Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon.Science367, 1135–1140 (2020)..
Dixon, J. R.&Riedl, H. R. Optical dispersion of lead sulfide in the infrared.Phys. Rev.140, A1283–A1291 (1965)..
Rabii, S. Investigation of energy-band structures and electronic properties of PbS and PbSe.Phys. Rev.173, 918 (1968)..
Nanda, K. K. et al. Effective mass approximation for two extreme semiconductors: band gap of PbS and CuBr nanoparticles.J. Appl. Phys.95, 5035–5041 (2004)..
Messiah, A.Quantum Mechanics(Dover Publications, 2014).
Gasiorowicz, S.Quantum Physics3rd edn (Wiley, 2003).
Griffiths, D. J.&Schroeter, D. F.Introduction to Quantum Mechanics2nd edn (Cambridge University Press, 2017).
Dresselhaus, M. S., Dresselhaus, G.&Jorio, A.Group Theory: Application to the Physics of Condensed Matter(Springer, 2008).
Walton, A. K., Moss, T. S.&Ellis, B. Determination of the electron effective mass in the lead salts by the infra-red faraday effect.Proc. Phys. Soc.79, 1065–1068 (1962)..
Ramiro, I. et al. Size-and temperature-dependent intraband optical properties of heavily n-doped PbS colloidal quantum dot solid-state films.ACS Nano14, 7161–7169 (2020)..
Ramiro, I. et al. InAs/AlGaAs quantum dot intermediate band solar cells with enlarged sub-bandgaps. In38th IEEE Photovoltaic Specialists Conference(IEEE, 2012).
Fry, P. W. et al. Photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots.Phys. Status Solidi224, 497–502 (2001)..
Antolín, E. et al. Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell.J. Appl. Phys.108, 064513 (2010)..
Arfken, G. B., Weber, H. J.&Harris, F. E.Mathematical Methods for Physicists A Comprehensive Guide7th edn (Elsevier, 2013).
Willatzen, M.&Lew Yan Voon, L. C.The k p Method(Springer, 2009).
Datta, S.Quantum Phenomena(Addison-Wesley, 1989).
Peng, H. W. et al. First-principles study on rutile TiO2quantum dots.J. Phys. Chem. C112, 13964–13969 (2008)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构