1.Université Paris-Saclay, CNRS, C2N, 10 boulevard Thomas Gobert, 91120 Palaiseau, France
2.Université Côte d'Azur, CNRS, CRHEA, Rue Bernard Grégory, 06905 Sophia-Antipolis, France
3.STMicroelectronics, Rue Jean Monnet, 38054 Crolles, France
4.Université Grenoble Alpes, CEA, IRIG-DePhy, 17 rue des Martyrs, 38000 Grenoble, France
5.Université Grenoble Alpes, CEA, Leti, 17 rue des Martyrs, 38000 Grenoble, France
Moustafa El Kurdi (moustafa.el-kurdi@c2n.upsaclay.fr)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-17,
收稿日期:2021-05-11,
修回日期:2021-10-25,
录用日期:2021-10-29
Scan QR Code
GeSnOI mid-infrared laser technology[J]. LSA, 2021,10(12):2408-2420.
Wang, B. B. et al. GeSnOI mid-infrared laser technology. Light: Science & Applications, 10, 2408-2420 (2021).
GeSnOI mid-infrared laser technology[J]. LSA, 2021,10(12):2408-2420. DOI: 10.1038/s41377-021-00675-7.
Wang, B. B. et al. GeSnOI mid-infrared laser technology. Light: Science & Applications, 10, 2408-2420 (2021). DOI: 10.1038/s41377-021-00675-7.
GeSn alloys are promising materials for CMOS-compatible mid-infrared lasers manufacturing. Indeed
Sn alloying and tensile strain can tra
nsform them into direct bandgap semiconductors. This growing laser technology however suffers from a number of limitations
such as poor optical confinement
lack of strain
thermal
and defects management
all of which are poorly discussed in the literature. Herein
a specific GeSn-on-insulator (GeSnOI) stack using stressor layers as dielectric optical claddings is demonstrated to be suitable for a monolithically integration of planar Group-Ⅳ semiconductor lasers on a versatile photonic platform for the near- and mid-infrared spectral range. Microdisk-shape resonators on mesa structures were fabricated from GeSnOI
after bonding a Ge
0.9
Sn
0.1
alloy layer grown on a Ge strain-relaxed-buffer
itself on a Si(001) substrate. The GeSnOI microdisk mesas exhibited significantly improved optical gain as compared to that of conventional suspended microdisk resonators formed from the as-grown layer. We further show enhanced vertical out-coupling of the disk whispering gallery mode in-plane radiation
with up to 30% vertical out-coupling efficiency. As a result
the GeSnOI approach can be a valuable asset in the development of silicon-based mid-infrared photonics that combine integrated sources in a photonic platform with complex lightwave engineering.
Soref, R., Buca, D.&Yu, S. Q. Group Ⅳ photonics: driving integrated optoelectronics.Opt. Photonics News27, 32–39 (2016)..
Thomson, D. et al. Roadmap on silicon photonics.J. Opt.18, 073003 (2016)..
Wang, Z. C. et al. Novel light source integration approaches for silicon photonics.Laser Photonics Rev.11, 1700063 (2017)..
Seifried, M. et al. Monolithically integrated CMOS-compatible Ⅲ-Ⅴ on silicon lasers.IEEE J. Sel. Top. Quantum Electron.24, 8200709 (2018)..
Elbaz, A. et al. Reduced lasing thresholds in GeSn microdisk cavities with defect management of the optically active region.ACS Photonics7, 2713–2722 (2020)..
Zhou, Y. Y. et al. Electrically injected GeSn lasers on Si operating up to 100 K.Optica7, 924–928 (2020)..
Zhou, Y. Y. et al. Optically pumped GeSn lasers operating at 270 K with broad waveguide structures on Si.ACS Photonics6, 1434–1441 (2019)..
Wirths, S. et al. Lasing in direct-bandgap GeSn alloy grown on Si.Nat. Photonics9, 88–92 (2015)..
Singh, V. et al. Mid-infrared materials and devices on a Si platform for optical sensing.Sci. Technol. Adv. Mater.15, 014603 (2014)..
Hodgkinson, J.&Tatam, R. P. Optical gas sensing: a review.Meas. Sci. Technol.24, 012004 (2013)..
Reboud, V. et al. Optically pumped GeSn micro-disks with 16% Sn lasing at 3.1 μm up to 180 K.Appl. Phys. Lett.111, 092101 (2017)..
Al-Kabi, S. et al. An optically pumped 2.5 μm GeSn laser on Si operating at 110 K.Appl. Phys. Lett.109, 171105 (2016)..
Dou, W. et al. Investigation of GeSn strain relaxation and spontaneous composition gradient for low-defect and high-Sn alloy growth.Sci. Rep.8, 5640 (2018)..
von den Driesch, N. et al. Direct bandgap group Ⅳ epitaxy on Si for laser applications.Chem. Mater.27, 4693–4702 (2015)..
Gupta, S. et al. Achieving direct band gap in germanium through integration of Sn alloying and external strain.J. Appl. Phys.113, 073707 (2013)..
Pezzoli, F. et al. Temperature-dependent photoluminescence characteristics of GeSn epitaxial layers.ACS Photonics3, 2004–2009 (2016)..
Stange, D. et al. Short-wave infrared LEDs from GeSn/SiGeSn multiple quantum wells.Optica4, 185–188 (2017)..
Stange, D. et al. GeSn/SiGeSn heterostructure and multi quantum well lasers.ACS Photonics5, 4628–4636 (2018)..
Grant, P. C. et al. Direct bandgap type-Ⅰ GeSn/GeSn quantum well on a GeSn- and Ge- buffered Si substrate.AIP Adv.8, 025104 (2018)..
Thai, Q. M. et al. GeSn heterostructure micro-disk laser operating at 230 K.Opt. Express26, 32500–32508 (2018)..
Du, W. et al. Study of Si-based GeSn optically pumped lasers with micro-disk and ridge waveguide structures.Front. Phys.7, 147 (2019)..
Elbaz, A. et al. Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys.Nat. Photonics14, 375–382, https://doi.org/10.1038/s41566-020-0601-5 (2020)..
Thai, Q. M. et al. GeSn optical gain and lasing characteristics modelling.Phys. Rev. B102, 155203 (2020)..
Rainko, D. et al. Impact of tensile strain on low Sn content GeSn lasing.Sci. Rep.9, 259 (2019)..
Ghrib, A. et al. Tensile-strained germanium microdisks.Appl. Phys. Lett.102, 221112 (2013)..
Ghrib, A. et al. All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities.Adv. Opti. Mater.3, 353–358 (2015)..
Elbaz, A. et al. Germanium microlasers on metallic pedestals.APL Photonics3, 106102 (2018)..
Armand Pilon, F. T. et al. Lasing in strained germanium microbridges.Nat. Commun.10, 2724 (2019)..
Süess, M. J. et al. Analysis of enhanced light emission from highly strained germanium microbridges.Nat. Photonics7, 466–472 (2013)..
Nam, D. et al. Study of carrier statistics in uniaxially strained Ge for a low-threshold Ge laser.IEEE J. Sel. Top. Quantum Electron.20, 16–22 (2014)..
Imbrenda, D. et al. Infrared dielectric response, index of refraction, and absorption of germanium-tin alloys with tin contents up to 27% deposited by molecular beam epitaxy.Appl. Phys. Lett.113, 122104 (2018)..
Chrétien, J. et al. GeSn lasers covering a wide wavelength range thanks to uniaxial tensile strain.ACS Photonics6, 2462–2469 (2019)..
Elbaz, A. et al. Solving thermal issues in tensile-strained Ge microdisks.Opt. Express26, 28376–28384 (2018)..
Moutanabbir, O. et al. Monolithic infrared silicon photonics: the rise of (Si)GeSn semiconductors.Appl. Phys. Lett.118, 110502 (2021)..
Tabataba-Vakili, F. et al. Analysis of low-threshold optically pumped Ⅲ-nitride microdisk lasers.Appl. Phys. Lett.117, 121103 (2020)..
Baba, T.&Sano, D. Low-threshold lasing and Purcell effect in microdisk lasers at room temperature.IEEE J. Sel. Top. Quantum Electron.9, 1340–1346 (2003)..
Baba, T. et al. Spontaneous emission factor of a microcavity DBR surface-emitting laser.IEEE J. Quantum Electron.27, 1347–1358 (1991)..
Piprek, J., White, J. K.&SpringThorpe, A. J. What limits the maximum output power of long-wavelength AlGaInAs/InP laser diodes?IEEE J. Quantum Electron.38, 1253–1259 (2002)..
Mashanovich, G. Z. et al. Low loss silicon waveguides for the mid-infrared.Opt. Express19, 7112–7119 (2011)..
Miller, S. A. et al. Low-loss silicon platform for broadband mid-infrared photonics.Optica4, 707–712 (2017)..
Gupta, S. et al. Highly selective dry etching of germanium over germanium–tin (Ge1–xSnx): a novel route for Ge1–xSnx nanostructure fabrication.Nano Lett.13, 3783–3790 (2013)..
Lin, P. T. et al. Planar silicon nitride mid-infrared devices.Appl. Phys. Lett.102, 251121 (2013)..
Prost, M. et al. Tensile-strained germanium microdisk electroluminescence.Opt. Express.23, 6722–6730 (2015)..
Aubin, J. et al. Growth and structural properties of step-graded, high Sn content GeSn layers on Ge.Semicond. Sci. Technol.32, 094006 (2017)..
Bigourdan, F., Hugonin, J. -P.&Lalanne, P. Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures.J. Opt. Soc. Am. A31, 1303–1311 (2014)..
Rakić, A. D. et al. Optical properties of metallic films for vertical-cavity optoelectronic devices.Appl. Opt.37, 5271–5283 (1998)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构