1.Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), Guangdong-Hong Kong-Macao (GHM) Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
2.Department of Electrical and Computer Engineering, Nazarbayev University, Nur-Sultan, Kazakhstan
3.The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
4.Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen 518055, China
5.Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
6.Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
7.King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Physical Sciences and Engineering Division (PSE), Material Science and Engineering Program (MSE), Thuwal 23955-6900, Kingdom of Saudi Arabia
8.Department of Physics, The Chinese University of Hong Kong, Shatin 999077, Hong Kong, China
9.Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, Hong Kong, China
Hanlin Hu (hanlinhu@szpt.edu.cn)
Gang Li (gang.w.li@polyu.edu.hk)
纸质出版日期:2021-12-31,
网络出版日期:2021-12-02,
收稿日期:2021-08-03,
修回日期:2021-10-18,
录用日期:2021-11-03
Scan QR Code
Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high
Ren, Z. W. et al. Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science & Applications, 10, 2467-2481 (2021).
Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high
Ren, Z. W. et al. Room-temperature multiple ligands-tailored SnO2 quantum dots endow in situ dual-interface binding for upscaling efficient perovskite photovoltaics with high VOC. Light: Science & Applications, 10, 2467-2481 (2021). DOI: 10.1038/s41377-021-00676-6.
The benchmark tin oxide (SnO
2
) electron transporting layers (ETLs) have enabled remarkable progress in planar perovskite solar cell (PSCs). However
the energy loss is still a challenge due to the lack of "hidden interface" control. We report a novel ligand-tailored ultrafine SnO
2
quantum dots (QDs)
via
a facile rapid room temperature synthesis. Importantly
the ligand-tailored SnO
2
QDs ETL with multi-functional terminal groups in situ refines the buried interfaces with both the perovskite and transparent electrode
via
enhanced interface binding and perovskite passivation. These novel ETLs induce synergistic effects of physical and chemical interfacial modulation and preferred perovskite crystallization-directing
delivering reduced interface defects
suppressed non-radiative recombination and elongated charge carrier lifetime. Power conversion efficiency (PCE) of 23.02% (0.04 cm
2
) and 21.6% (0.98 cm
2
V
OC
loss: 0.336 V) have been achieved for the blade-coated PSCs (1.54 eV
E
g
) with our new ETLs
representing a record for SnO
2
based blade-coated PSCs. Moreover
a substantially enhanced PCE (
V
OC
) from 20.4% (1.15 V) to 22.8% (1.24 V
90 mV higher
V
OC
0.04 cm
2
device) in the blade-coated 1.61 eV PSCs system
via replacing the benchmark commercial colloidal SnO
2
with our new ETLs.
Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells.Nat. Photonics13, 460–466 (2019)..
Lee, M. M. et al. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites.Science338, 643–647 (2012)..
Malinkiewicz, O. et al. Perovskite solar cells employing organic charge-transport layers.Nat. Photonics8, 128–132 (2014)..
Green, M. A. et al. The emergence of perovskite solar cells.Nat. Photonics8, 506 (2014)..
Grätzel, M. et al. The light and shade of perovskite solar cells.Nat. Mater.13, 838 (2014)..
Anaraki, E. H. et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide.Energy Environ. Sci.9, 3128–3134 (2016)..
Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals.Science347, 519–522 (2015)..
Eperon, G. E. et al. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells.Energy Environ. Sci.7, 982–988 (2014)..
Wehrenfennig, C. et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites.Adv. Mater.26, 1584–1589 (2014)..
Lang, F. et al. Influence of radiation on the properties and the stability of hybrid perovskites.Adv. Mater.30, 1702905 (2018)..
Im, J. H. et al. 6.5% efficient perovskite quantum-dot-sensitized solar cell.Nanoscale3, 4088–4093 (2011)..
Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells.J. Am. Chem. Soc.131, 6050–6051 (2009)..
Saliba, M. et al. Structured organic–inorganic perovskite toward a distributed feedback laser.Adv. Mater.28, 923–929 (2016)..
Dou, L. T. et al. Solution-processed hybrid perovskite photodetectors with high detectivity.Nat. Commun.5, 5404 (2014)..
Yakunin, S. et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites.Nat. Photonics10, 585–589 (2016)..
Zhou, F. C. et al. Low-voltage, optoelectronic CH3NH3PbI3−xClxmemory with integrated sensing and logic operations.Adv. Funct. Mater.28, 1800080 (2018)..
Wei, H. T. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals.Nat. Photonics10, 333–339 (2016)..
Kim, Y. C. et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging.Nature550, 87 (2017)..
Tan, Z. K. et al. Bright light-emitting diodes based on organometal halide perovskite.Nat. Nanotechnol.9, 687 (2014)..
Jeong, J. et al. Pseudo-halide anion engineering for α-FAPbI3perovskite solar cells.Nature592, 381–385 (2021)..
Kim, H. S. etal. Parameters affectingI–Vhysteresis of CH3NH3PbI3perovskite solar cells: effects of perovskite crystal size and mesoporous TiO2layer.J. Phys. Chem. Lett.5, 2927–2934 (2014)..
Jiang, Q. et al. SnO2: a wonderful electron transport layer for perovskite solar cells.Small14, 1801154 (2018)..
Ke, W. J. et al. Low-temperature solution-processed tin oxide as an alternative electron transporting layer for efficient perovskite solar cells.J. Am. Chem. Soc.137, 6730–6733 (2015)..
Jiang, Q. et al. Enhanced electron extraction using SnO2for high-efficiency planar-structure HC (NH2)2PbI3-based perovskite solar cells.Nat. Energy2, 16177 (2016)..
Yang, D. et al. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2.Nat. Commun.9, 3239 (2018)..
Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management.Nature590, 587–593 (2021)..
Dong, Q. S. et al. Improved SnO2electron transport layers solution-deposited at near room temperature for rigid or flexible perovskite solar cells with high efficiencies.Adv. Energy Mater.9, 1900834 (2019)..
Yang, G. et al. Tin oxide (SnO2) as effective electron selective layer material in hybrid organic–inorganic metal halide perovskite solar cells.J. Energy Chem.27, 962–970 (2018)..
Zhu, Z. L. et al. Enhanced efficiency and stability of inverted perovskite solar cells using highly crystalline SnO2nanocrystals as the robust electron-transporting layer.Adv. Mater.28, 6478–6484 (2016)..
Singh, M. et al. Facile synthesis of composite tin oxide nanostructures for high-performance planar perovskite solar cells.Nano Energy60, 275–284 (2019)..
Park, S. Y. et al. Simultaneous ligand exchange fabrication of flexible perovskite solar cells using newly synthesized uniform tin oxide quantum dots.J. Phys. Chem. Lett.9, 5460–5467 (2018)..
Liu, Z. et al. Coagulated SnO2colloids for high-performance planar perovskite solar cells with negligible hysteresis and improved stability.Angew. Chem. Int. Ed.58, 11497–11504 (2019)..
Yang, G. et al. Effective carrier concentration tuning of SnO2quantum dot electron-selective layers for high-performance planar perovskite solar cells.Adv. Mater.30, 1706023 (2018)..
Yu, H. et al. Superfast room-temperature activation of SnO2thin films via atmospheric plasma oxidation and their application in planar perovskite photovoltaics.Adv. Mater.30, 1704825 (2018)..
Abuhelaiqa, M. et al. Stable perovskite solar cells using tin acetylacetonate based electron transporting layers.Energy Environ. Sci.12, 1910–1917 (2019)..
Chen, B. et al. J. Imperfections and their passivation in halide perovskite solar cells.Chem. Soc. Rev.48, 3842–3867 (2019)..
Akin, S. et al. New strategies for defect passivation in high-efficiency perovskite solar cells.Adv. Energy Mater.10, 1903090 (2021)..
Han, T. H. et al. Interface and defect engineering for metal halide perovskite optoelectronic devices.Adv. Mater.31, 1803515 (2019)..
Ke, W. J. et al. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells.J. Mater. Chem. A4, 14276–14283 (2016)..
Liu, X. et al. A low-temperature, solution processable tin oxide electron-transporting layer prepared by the dual-fuel combustion method for efficient perovskite solar cells.Adv. Mater. Interfaces3, 1600122 (2016)..
Hui, W. et al. Red-carbon-quantum-dot-doped SnO2composite with enhanced electron mobility for efficient and stable perovskite solar cells.Adv. Mater.32, 1906374 (2021)..
Park, M. et al. Low-temperature solution-processed Li-doped SnO2as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells.Nano Energy26, 208–215 (2016)..
Bai, Y. et al. Low temperature solution-processed Sb: SnO2nanocrystals for efficient planar perovskite solar cells.ChemSusChem9, 2686–2691 (2016)..
Tu, B. et al. Novel molecular doping mechanism for n-doping of SnO2via triphenylphosphine oxide and its effect on perovskite solar cells.Adv. Mater.31, 1805944 (2019)..
Wang, R. et al. A review of perovskites solar cell stability.Adv. Funct. Mater.29, 1808843 (2019)..
Lu, X. et al. Room-temperature synthesis of colloidal SnO2quantum dot solution and ex-situ deposition on carbon nanotubes as anode materials for lithium ion batteries.J. Alloy. Compd.680, 109–115 (2016)..
Cigala, R. M. et al. The inorganic speciation of tin(Ⅱ) in aqueous solution.Geochim. Cosmochim. Acta87, 1–20 (2012)..
Hu, W. P. et al. Low-temperature in situ amino functionalization of TiO2nanoparticles sharpens electron management achieving over 21% efficient planar perovskite solar cells.Adv. Mater.31, 1806095 (2019)..
Li, L. et al. Efficient synthesis of highly luminescent copper indium sulfide-based core/shell nanocrystals with surprisingly long-lived emission.J. Am. Chem. Soc.133, 1176–1179 (2011)..
Aniskevich, Y. et al. Underpotential deposition of cadmium on colloidal CdSe quantum dots: effect of particle size and surface ligands.J. Phys. Chem. C123, 931–939 (2018)..
Wei, J. et al. SnO2-in-polymer matrix for high-efficiency perovskite solar cells with improved reproducibility and stability.Adv. Mater.30, 1805153 (2018)..
Chan, D. Y. C. et al. Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern–Grahame layers.J. Colloid Interface Sci.296, 150–158 (2006)..
Song, S. et al. Systematically optimized bilayered electron transport layer for highly efficient planar perovskite solar cells (η= 21.1%).ACS Energy Lett.2, 2667–2673 (2017)..
Kim, T. W. et al. Direct observation of the tunneling phenomenon in organometal halide perovskite solar cells and its influence on hysteresis.ACS Energy Lett.3, 2743–2749 (2018)..
Qiu, L. B. et al. Scalable fabrication of stable high efficiency perovskite solar cells and modules utilizing room temperature sputtered SnO2electron transport layer.Adv. Funct. Mater.29, 1806779 (2019)..
Shen, Z. et al. Surface amino-functionalization of Sn-Beta zeolite catalyst for lactic acid production from glucose.RSC Adv.9, 18989–18995 (2019)..
Chen, H. et al. Efficient bifacial passivation with crosslinked thioctic acid for high-performance methylammonium lead iodide perovskite solar cells.Adv. Mater.32, 1905661 (2019)..
Wang, Z. et al. Interfacial sulfur functionalization anchoring SnO2and CH3NH3PbI3for enhanced stability and trap passivation in perovskite solar cells.ChemSusChem11, 3941–3948 (2018)..
Feng, Y. C. et al. Synthesis of mesoporous BiOBr 3D microspheres and their photodecomposition for toluene.J. Hazard. Mater.192, 538–544 (2011)..
Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%.Nat. Energy1, 16142 (2016)..
Liu, H. R. et al. Pyridine-functionalized fullerene electron transport layer for efficient planar perovskite solar cells.ACS Appl Mater. Interfaces11, 23982–23989 (2019)..
Hu, H. L. et al. Room-temperature meniscus coating of>20% perovskite solar cells: a film formation mechanism investigation.Adv. Funct. Mater.29, 1900092 (2019)..
Xie, J. S. et al. Perovskite bifunctional device with improved electroluminescent and photovoltaic performance through interfacial energy-band engineering.Adv. Mater.31, 1902543 (2019)..
Qing, J. et al. High-quality ruddlesden–popper perovskite films based on in situ formed organic spacer cations.Adv. Mater.31, 1904243 (2019)..
Noel, N. K. et al. Interfacial charge-transfer doping of metal halide perovskites for high performance photovoltaics.Energy Environ. Sci.12, 3063–3073 (2019)..
Xing, G. C. et al. Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3.Science342, 344–347 (2013)..
Manser, J. S. et al. Band filling with free charge carriers in organometal halide perovskites.Nat. Photonics8, 737–743 (2014)..
Kagan, C. et al. Electronic energy transfer in CdSe quantum dot solids.Phys. Rev. Lett.76, 1517–1520 (1996)..
Herz, L. M. et al. Charge-carrier dynamics in organic-inorganic metal halide perovskites.Annu. Rev. Phys. Chem.67, 65–89 (2016)..
Luo, D. Y. et al. Minimizing non-radiative recombination losses in perovskite solar cells.Nat. Rev. Mater.5, 44–60 (2021)..
Jeon, N. J. et al. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells.Nat. Mater.13, 897–903 (2014)..
Liu, K. et al. Zwitterionic-surfactant-assisted room-temperature coating of efficient perovskite solar cells.Joule4, 2404–2425 (2021)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构