1.Engineering Research Center of Optical Instrument and System, The Ministry of Education, Shanghai Key Laboratory of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai 200093, China
2.Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Department of Chemistry, Utrecht University, Princetonplein 1, 3584 CC, Utrecht, The Netherlands
3.School of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China
4.State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510641, China
5.Inorganic Photoactive Materials, Institute of Inorganic Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1 40225, Düsseldorf, Germany
Qinyuan Zhang (qyzhang@scut.edu.cn)
Markus Suta (markus.suta@hhu.de)
纸质出版日期:2021-12-31,
网络出版日期:2021-11-22,
收稿日期:2021-08-02,
修回日期:2021-10-28,
录用日期:2021-11-04
Scan QR Code
One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+[J]. LSA, 2021,10(12):2443-2454.
Yu, D. C. et al. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Science & Applications, 10, 2443-2454 (2021).
One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+[J]. LSA, 2021,10(12):2443-2454. DOI: 10.1038/s41377-021-00677-5.
Yu, D. C. et al. One ion to catch them all: Targeted high-precision Boltzmann thermometry over a wide temperature range with Gd3+. Light: Science & Applications, 10, 2443-2454 (2021). DOI: 10.1038/s41377-021-00677-5.
Ratiometric luminescence thermometry with trivalent lanthanide ions and their 4f
n
energy levels is an emerging technique for non-invasive remote temperature sensing with high spatial and temporal resolution. Conventional ratiometric luminescence thermometry often relies on thermal coupling between two closely lying energy levels governed by Boltzmann's law. Despite its simplicity
Boltzmann thermometry with two excited levels allows precise temperature sensing
but only within a limited temperature range. While low temperatures slow down the nonradiative transitions required to generate a measurable population in the higher excitation level
temperatures that are too high favour equalized populations of the two excited levels
at the expense of low relative thermal sensitivity. In this work
we extend the concept of Boltzmann thermometry to more than two excited levels and provide quantitative guidelines that link the choice of energy gaps between multiple excited states to the performance in different temperature windows. By this approach
it is possible to retain the high relative sensitivity and precision of the temperature measurement over a wide temperature range within the same system. We demonstrate this concept using YAl
3
(BO
3
)
4
(YAB): Pr
3+
Gd
3+
with an excited
6
P
J
crystal field and spin-orbit split levels of Gd
3+
in the UV range to avoid a thermal black body background even at the highest temperatures. This phosphor is easily excitable with inexpensive and powerful blue LEDs at 450 nm. Zero-background luminescence thermometry is realized by using blue-to-UV energy transfer upconversion with the Pr
3+
−Gd
3+
couple upon excitation in the visible range. This method allows us to cover a temperature window between 30 and 800 K.
Lahiri, B. B. et al. Medical applications of infrared thermography: a review.Infrared Phys. Technol.55, 221–235 (2012)..
Bagavathiappan, S. et al. Infrared thermography for condition monitoring—a review.Infrared Phys. Technol.60, 35–55 (2013)..
Xiao, Y. Z. et al. Precision measurements of temperature-dependent and nonequilibrium thermal emitters.Laser Photonics Rev.14, 1900443 (2020)..
Brites, C. D. S. et al. Thermometry at the nanoscale.Nanoscale4, 4799–4829 (2012)..
Jaque, D.&Vetrone, F. Luminescence nanothermometry.Nanoscale4, 4301–4326 (2012)..
Dramićanin, M.Luminescence Thermometry: Methods, Materials, and Applications(Woodhead Publishing, 2018).
Allison, S. W.&Gillies, G. T. Remote thermometry with thermographic phosphors: instrumentation and applications.Rev. Sci. Instrum.68, 2615–2650 (1997)..
Allison, S. W. et al. Nanoscale thermometry via the fluorescence of YAG: Ce phosphor particles: measurements from 7 to 77 ℃.Nanotechnology14, 859–863 (2003)..
Allison, S. W. A brief history of phosphor thermometry.Meas. Sci. Technol.30, 072001 (2019)..
Kucsko, G. et al. Nanometre-scale thermometry in a living cell.Nature500, 54–58 (2013)..
Neumann, P. et al. High-precision nanoscale temperature sensing using single defects in diamond.Nano Lett.13, 2738–2742 (2013)..
Wang, N. et al. Magnetic criticality enhanced hybrid nanodiamond thermometer under ambient conditions.Phys. Rev. X8, 011042 (2018)..
Walker, G. W. et al. Quantum-dot optical temperature probes.Appl. Phys. Lett.83, 3555–3557 (2003)..
Ortega-Rodríguez, A. et al. 10-fold quantum yield improvement of Ag2S nanoparticles by fine compositional tuning.ACS Appl. Mater. Interfaces12, 12500–12509 (2020)..
Santos, H. D. A. et al. Ultrafast photochemistry produces superbright short-wave infrared dots for low-dose in vivo imaging.Nat. Commun.11, 2933 (2020)..
Yakunin, S. et al. High-resolution remote thermometry and thermography using luminescent low-dimensional tin-halide perovskites.Nat. Mater.18, 846–852 (2019)..
Morad, V. et al. Hybrid 0D antimony halides as air-stable luminophores for high-spatial-resolution remote thermography.Adv. Mater.33, 2007355 (2021)..
Gota, C. et al. Hydrophilic fluorescent nanogel thermometer for intracellular thermometry.J. Am. Chem. Soc.131, 2766–2767 (2009)..
Okabe, K. et al. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy.Nat. Commun.3, 705 (2012)..
Sakaguchi, R., Kiyonaka, S.&Mori, Y. Fluorescent sensors reveal subcellular thermal changes.Curr. Opin. Biotechnol.31, 57–64 (2015)..
Uchiyama, S.&Gota, C. Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature.Rev. Anal. Chem.36, 20160021 (2017)..
Brites, C. D. S., Millán, A.&Carlos, L. D. Lanthanides in luminescent thermometry.Handb. Phys. Chem. Rare Earths49, 339–427 (2016)..
Brites, C. D. S., Balabhadra, S.&Carlos, L. D. Lanthanide-based thermometers: at the cutting-edge of luminescence thermometry.Adv. Opt. Mater.7, 1801239 (2019)..
Souza, A. S. et al. Highly-sensitive Eu3+ratiometric thermometers based on excited state absorption with predictable calibration.Nanoscale8, 5327–5333 (2016)..
Trejgis, K., Bednarkiewicz, A.&Marciniak, L. Engineering excited state absorption-based nanothermometry for temperature sensing and imaging.Nanoscale12, 4667–4675 (2020)..
Trejgis, K. et al. Nd3+doped TZPN glasses for NIR operating single band ratiometric approach of contactless temperature readout.J. Lumin.224, 117295 (2020)..
Brites, C. D. S. et al. Instantaneous ballistic velocity of suspended Brownian nanocrystals measured by upconversion nanothermometry.Nat. Nanotechnol.11, 851–856 (2016)..
Bastos, A. et al. Thermal properties of lipid bilayers determined using upconversion nanothermometry.Adv. Funct. Mater.29, 1905474 (2019)..
Caixeta, F. J. et al. High-quantum-yield upconverting Er3+/Yb3+-organic–inorganic hybrid dual coatings for real-time temperature sensing and photothermal conversion.J. Phys. Chem. C124, 19892–19903 (2020)..
del Rosal, B. et al. Nd3+ions in nanomedicine: perspectives and applications.Optical Mater.63, 185–196 (2017)..
del Rosal, B. et al. In vivo luminescence nanothermometry: from materials to applications.Adv. Opt. Mater.5, 1600508 (2017)..
Piñol, R. et al. Real-time intracellular temperature imaging using lanthanide-bearing polymeric micelles.Nano Lett.20, 6466–6472 (2020)..
Ximendes, E. C. et al. Thulium doped LaF3for nanothermometry operating over 1000 nm.Nanoscale11, 8864–8869 (2019)..
Skripka, A. et al. Advancing neodymium single-band nanothermometry.Nanoscale11, 11322–11330 (2019)..
Hazra, C. et al. Erbium single-band nanothermometry in the third biological imaging window: potential and limitations.Adv. Opt. Mater.8, 2001178 (2020)..
Geitenbeek, R. G. et al. In situ luminescence thermometry to locally measure temperature gradients during catalytic reactions.ACS Catal.8, 2397–2401 (2018)..
van Ravenhorst, I. K. et al. In situ local temperature mapping in microscopy nano-reactors with luminescence thermometry.ChemCatChem11, 5505–5512 (2019)..
Hartman, T. et al. Operando monitoring of temperature and active species at the single catalyst particle level.Nat. Catal.2, 986–996 (2019)..
Geitenbeek, R. G. et al. Luminescence thermometry for in situ temperature measurements in microfluidic devices.Lab Chip19, 1236–1246 (2109)..
Hartman, T. et al.Operandonanoscale sensors in catalysis: all eyes on catalyst particles.ACS Nano14, 3725–3735 (2020)..
Bednarkiewicz, A. et al. Standardizing luminescence nanothermometry for biomedical applications.Nanoscale12, 14405–14421 (2020)..
Dramićanin, M. D. Trends in luminescence thermometry.J. Appl. Phys.128, 040902 (2020)..
Bednarkiewicz, A. et al. Luminescence based temperature bio-imaging: status, challenges, and perspectives.Appl. Phys. Rev.8, 011317 (2021)..
Ximendes, E. et al.Quo vadis, nanoparticle-enabled in vivo fluorescence imaging?ACS Nano15, 1917–1941 (2021)..
van Swieten, T. P. et al. Mapping elevated temperatures with a micrometer resolution using the luminescence of chemically stable upconversion nanoparticles.ACS Appl. Nano Mater.4, 4208–4215 (2021)..
Labrador-Páez, L. et al. Reliability of rare-earth-doped infrared luminescent nanothermometers.Nanoscale10, 22319–22328 (2018)..
Shen, Y. L. et al. In vivo spectral distortions of infrared luminescent nanothermometers compromise their reliability.ACS Nano14, 4122–4133 (2020)..
Errulat, D. et al. A luminescent thermometer exhibiting slow relaxation of the magnetization: toward self-monitored building blocks for next-generation optomagnetic devices.ACS Cent. Sci.5, 1187–1198 (2019)..
Gálico, D. A. et al. Triplet-state position and crystal-field tuning in opto-magnetic lanthanide complexes: two sides of the same coin.Chem. A Eur. J.25, 14625–14637 (2019)..
Kaczmarek, A. M. et al. Developing luminescent ratiometric thermometers based on a covalent organic framework (COF).Angew. Chem. Int. Ed.59, 1932–1940 (2020)..
Gomez, G. E. et al. Tunable energy-transfer process in heterometallic MOF materials based on 2, 6-naphthalenedicarboxylate: solid-state lighting and near-infrared luminescence thermometry.Chem. Mater.32, 7458–7468 (2020)..
Kaczmarek, A. M. et al. Visible and NIR upconverting Er3+−Yb3+luminescent nanorattles and other hybrid PMO-inorganic structures for in vivo nanothermometry.Adv. Funct. Mater.30, 2003101 (2020)..
Geitenbeek, R. G., de Wijn, H. W.&Meijerink, A. Non-Boltzmann luminescence in NaYF4: Eu3+: implications for luminescence thermometry.Phys. Rev. Appl.10, 064006 (2018)..
Suta, M. et al. Making Nd3+a sensitive luminescent thermometer for physiological temperatures—an account of pitfalls in Boltzmann thermometry.Nanomaterials10, 543 (2020)..
Suta, M.&Meijerink, A. A theoretical framework for ratiometric single ion luminescent thermometers—thermodynamic and kinetic guidelines for optimized performance.Adv. Theory Simul.3, 2000176 (2020)..
Tian, X. N. et al. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4: Nd3+.Opt. Express22, 30333–30345 (2014)..
Ćirić, A. et al. Comparison of three ratiometric temperature readings from the Er3+upconversion emission.Nanomaterials10, 627 (2020)..
Li, L. P. Three-energy-level-cascaded strategy for a more sensitive luminescence ratiometric thermometry.Sens. Actuators A: Phys.304, 111864 (2020)..
Belokoneva, E. L. et al. The crystal structure of YAl3(BO3)4.Zh. Strukturnoi Khimii22, 196–198 (1981)..
Hu, C. H. et al. Visible-to-ultraviolet upconversion in Pr3+: Y2SiO5crystals.Chem. Phys.325, 563–566 (2006)..
Cates, E. L.&Kim, J. H. Upconversion under polychromatic excitation: Y2SiO5:Pr3+, Li+converts violet, cyan, green, and yellow light into UVC.Optical Mater.35, 2347–2351 (2013)..
Cates, E. L., Wilkinson, A. P.&Kim, J. H. Visible-to-UVC upconversion efficiency and mechanisms of Lu7O6F9: Pr3+and Y2SiO5: Pr3+ceramics.J. Lumin.160, 202–209 (2015)..
Cates, E. L.&Li, F. F. Balancing intermediate state decay rates for efficient Pr3+visible-to-UVC upconversion: the case of β-Y2Si2O7: Pr3+.RSC Adv.6, 22791–22796 (2016)..
Du, Y. Y. et al. Blue-pumped deep ultraviolet lasing from lanthanide-doped Lu6O5F8upconversion nanocrystals.Adv. Opt. Mater.8, 1900968 (2020)..
Sahu, S. P. et al. The myth of visible light photocatalysis using lanthanide upconversion materials.Environ. Sci. Technol.52, 2973–2980 (2018)..
Harada, N. et al. Discovery of Key TIPS-naphthalene for efficient visible-to-UV photon upconversion under sunlight and room light.Angew. Chem. Int. Ed.60, 142–147 (2021)..
Back, M. et al. Effective ratiometric luminescent thermal sensor by Cr3+-doped mullite Bi2Al4O9with robust and reliable performances.Adv. Optical Mater.8, 2000124 (2020)..
Back, M. et al. Pushing the limit of Boltzmann distribution in Cr3+-doped CaHfO3for cryogenic thermometry.ACS Appl. Mater. Interfaces12, 38325–38332 (2020)..
Mykhaylyk, V. et al. Multimodal non-contact luminescence thermometry with Cr-doped oxides.Sensors20, 5259 (2020)..
Sytsma, J., Imbusch, G. F.&Blasse, G. The spectroscopy of Gd3+in yttriumoxychloride: Judd–Ofelt parameters from emission data.J. Chem. Phys.91, 1456–1461 (1989)..
Sytsma, J.&Blasse, G. Comparison of the emission ofEu2+in MFCl(M=Sr,Ba) andGd3+in YOCl.J. Lumin.51, 283–292 (1992)..
Bartl, M. H. et al. Growth, optical spectroscopy and crystal field investigation of YAl3(BO3)4single crystals doped with tripositive praseodymium.Spectrochim. Acta Part A: Mol. Biomol. Spectrosc.57, 1981–1990 (2001)..
de Vries, A. J.&Blasse, G. On the possibility to sensitize Gd3+luminescence by the Pr3+ion.Mater. Res. Bull.21, 683–694 (1986)..
Balabhadra, S. et al. Upconverting nanoparticles working as primary thermometers in different media.J. Phys. Chem. C121, 13962–13968 (2017)..
Sytsma, J. et al. Spectroscopic studies and crystal-field analysis of Cm3+and Gd3+in LuPO4.Phys. Rev. B52, 12668–12676 (1995)..
Riseberg, L. A.&Moos, H. W. Multiphonon orbit-lattice relaxation in LaBr3, LaCl3, and LaF3.Phys. Rev. Lett.19, 1423–1426 (1967)..
Riseberg, L. A.&Moos, H. W. Multiphonon orbit-lattice relaxation of excited states of rare-earth ions in crystals.Phys. Rev. J. Arch.174, 429–438 (1968)..
Back, M. et al. Boltzmann thermometry in Cr3+-doped Ga2O3polymorphs: the structure matters!Adv. Opt. Mater.9, 2100033 (2021)..
Liu, X. et al. Mixed-lanthanoid metal-organic framework for ratiometric cryogenic temperature sensing.Inorg. Chem.54, 11323–11329 (2015)..
Ananias, D. et al. Near-infrared ratiometric luminescent thermometer based on a new lanthanide silicate.Chem. A Eur. J.24, 11926–11935 (2018)..
Abram, C. et al. ScVO4: Bi3+thermographic phosphor particles for fluid temperature imaging with sub-℃ precision.Opt. Lett.45, 3893–3896 (2020)..
Detrio, J. A. Line strengths for Gd3+at aC4vsite in SrF2.Phys. Rev. B4, 1422–1427 (1971)..
Yu, D. C. et al. Understanding and tuning blue-to-near-infrared photon cutting by the Tm3+/Yb3+couple.Light. : Sci. Appl.9, 107 (2020)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构