1.Dipartimento di Fisica, Università di Pavia, Via A. Bassi 6, 27100 Pavia, Italy
2.Centre for Advanced Photonics and Process Analysis, Munster Technological University, Rossa Ave Bishopstown, Cork, T12 P928, Ireland
3.Tyndall National Institute, Lee Maltings Complex Dyke Parade, Cork, T12 R5CP, Ireland
4.SUPA, School of Physics and Astronomy, University of St. Andrews, Fife, KY16 9SS, UK
5.Present address: École Polytechnique Fédérale de Lausanne, Photonic Systems Laboratory (PHOSL), STI-IEL, Station 11, Lausanne, 1015, Switzerland
Marco Clementi (marco.clementi01@universitadipavia.it)
Matteo Galli (matteo.galli@unipv.it)
纸质出版日期:2021-12-31,
网络出版日期:2021-12-03,
收稿日期:2021-04-02,
修回日期:2021-10-11,
录用日期:2021-11-09
Scan QR Code
Thermo-optically induced transparency on a photonic chip[J]. LSA, 2021,10(12):2482-2491.
Clementi, M. et al. Thermo-optically induced transparency on a photonic chip. Light: Science & Applications, 10, 2482-2491 (2021).
Thermo-optically induced transparency on a photonic chip[J]. LSA, 2021,10(12):2482-2491. DOI: 10.1038/s41377-021-00678-4.
Clementi, M. et al. Thermo-optically induced transparency on a photonic chip. Light: Science & Applications, 10, 2482-2491 (2021). DOI: 10.1038/s41377-021-00678-4.
Controlling the optical response of a medium through suitably tuned coherent electromagnetic fields is highly relevant in a number of potential applications
from all-optical modulators to optical storage devices. In particular
electromagnetically induced transparency (EIT) is an established phenomenon in which destructive quantum interference creates a transparency window over a narrow spectral range around an absorption line
which
in turn
allows to slow and ultimately stop light due to the anomalous refractive index dispersion. Here we report on the observation of a new form of both induced transparency and amplification of a weak probe beam in a strongly driven silicon photonic crystal resonator at room temperature. The effect is based on the oscillating temperature field induced in a nonlinear optical cavity
and it reproduces many of the key features of EIT while being independent of either atomic or mechanical resonances. Such thermo-optically induced transparency will allow a versatile implementation of EIT-analogs in an integrated photonic platform
at almost arbitrary wavelength of interest
room temperature and in a practical
low cost
and scalable system.
Fleischhauer, M., Imamoğlu, A.&Marangos, J. P. Electromagnetically induced transparency: optics in coherent media.Rev. Mod. Phys.77, 633–673 (2005)..
Boller, K. -J., Imamoğlu, A.&Harris, S. E. Observation of electromagnetically induced transparency.Phys. Rev. Lett.66, 2593–2596 (1991)..
Hau, L. V., Harris, S. E., Dutton, Z.&Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas.Nature397, 594–598 (1999)..
Longdell, J. J., Fraval, E., Sellars, M. J.&Manson, N. B. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid.Phys. Rev. Lett.95, 063601 (2005)..
Bigelow, M. S. Superluminal and slow light propagation in a room-temperature solid.Science301, 200–202 (2003)..
Xu, Q. et al. Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency.Phys. Rev. Lett.96, 123901 (2006)..
Dong, C. H. et al. Brillouin-scattering-induced transparency and non-reciprocal light storage.Nat. Commun.6, 6193 (2015)..
Kim, J., Kuzyk, M. C., Han, K., Wang, H.&Bahl, G. Non-reciprocal Brillouin scattering induced transparency.Nat. Phys.11, 275–280 (2015). 1408.1739..
Agarwal, G. S.&Huang, S. Electromagnetically induced transparency in mechanical effects of light.Phys. Rev. A81, 041803 (2010)..
Weis, S. et al. Optomechanically induced transparency.Science330, 1520–1523 (2010). 1007.0565..
Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics.Nature472, 69–73 (2011). 1012.1934..
Zhang, H. et al. Slow light for deep tissue imaging with ultrasound modulation.Appl. Phys. Lett.100, 131102 (2012)..
Clementi, M. Nonlinear Optics in Photonic Crystal Cavities. Ph. D. thesis, Università degli Studi di Pavia (2021).https://doi.org/10.13132/unipv-thesis-mclementihttps://doi.org/10.13132/unipv-thesis-mclementi.
Carmon, T., Yang, L.&Vahala, K. J. Dynamical thermal behavior and thermal self-stability of microcavities.Opt. Express12, 4742 (2004)..
Clementi, M., Galli, M., O'Faolain, L.&Gerace, D. Electromagnetically induced transparency from first-order dynamical systems. Preprint athttp://arxiv.org/abs/2111.06602http://arxiv.org/abs/2111.06602(2021).
Boyd, R. W. Slow and fast light: fundamentals and applications.J. Mod. Opt.56, 1908–1915 (2009)..
Welna, K., Portalupi, S. L., Galli, M., O'Faolain, L.&Krauss, T. F. Novel dispersion adapted photonic crystal cavity with improved disorder stability.IEEE J. Quantum Electron48, 1177–1183 (2012)..
Galli, M. et al. Light scattering and Fano resonances in high-Q photonic crystal nanocavities.Appl. Phys. Lett.94, 071101 (2009)..
Tanabe, T., Notomi, M., Mitsugi, S., Shinya, A.&Kuramochi, E. Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip.Opt. Lett.30, 2575 (2005)..
Haret, L. -D., Tanabe, T., Kuramochi, E.&Notomi, M. Extremely low power optical bistability in silicon demonstrated using 1D photonic crystal nanocavity.Opt. Express17, 21108 (2009)..
Iadanza, S. et al. Model of thermo-optic nonlinear dynamics of photonic crystal cavities.Phys. Rev. B102, 245404 (2021)..
Ilchenko, V.&Gorodetsky, M. Thermal nonlinear effects in optical whispering gallery microresonators.Laser Phys.2, 1004–1009 (1992)..
Hu, C., Schulz, S. A., Liles, A. A.&O'Faolain, L. Tunable optical buffer through an analogue to electromagnetically induced transparency in coupled photonic crystal cavities.ACS Photonics5, 1827–1832 (2018)..
Fang, K., Matheny, M. H., Luan, X.&Painter, O. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits.Nat. Photonics10, 489–496 (2016)..
Ma, J. et al. Photothermally induced transparency.Sci. Adv.6, eaax8256 (2021)..
Shih, M. -H. et al. Efficient heat dissipation of photonic crystal microcavity by monolayer graphene.ACS Nano7, 10818–10824 (2013)..
Anetsberger, G., Rivière, R., Schliesser, A., Arcizet, O.&Kippenberg, T. J. Ultralow-dissipation optomechanical resonators on a chip.Nat. Photonics2, 627–633 (2008)..
Xu, Q., Dong, P.&Lipson, M. Breaking the delay-bandwidth limit in a photonic structure.Nat. Phys.3, 406–410 (2007)..
Schulz, S. A. et al. Dispersion engineered slow light in photonic crystals: a comparison.J. Opt.12, 104004 (2010)..
Cardea, I. et al. Arbitrarily high time bandwidth performance in a nonreciprocal optical resonator with broken time invariance.Sci. Rep.10, 15752 (2021)..
Clementi, M., Barone, A., Fromherz, T., Gerace, D.&Galli, M. Selective tuning of optical modes in a silicon comb-like photonic crystal cavity.Nanophotonics9, 205–210 (2019)..
Portalupi, S. L. et al. Planar photonic crystal cavities with far-field optimization for high coupling efficiency and quality factor.Opt. Express18, 16064 (2010)..
0
浏览量
1
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构