1.Department of Physics, University of Regensburg, Regensburg, Germany
2.Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
3.School of Electronic and Electrical Engineering, University of Leeds, Woodhouse Lane, Leeds, UK
4.Mathematical Physics and NanoLund, Lund University, Lund, Sweden
5.Department of Electrical and Computer Engineering, Technical University of Munich, Munich, Germany
6.Department of Physics, TU Dortmund University, Dortmund, Germany
S. S. Dhillon (Sukhdeep.Dhillon@phys.ens.fr)
纸质出版日期:2021-12-31,
网络出版日期:2021-12-20,
收稿日期:2021-06-22,
修回日期:2021-11-18,
录用日期:2021-11-23
Scan QR Code
Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser[J]. LSA, 2021,10(12):2531-2540.
Riepl, J. et al. Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser. Light: Science & Applications, 10, 2531-2540 (2021).
Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser[J]. LSA, 2021,10(12):2531-2540. DOI: 10.1038/s41377-021-00685-5.
Riepl, J. et al. Field-resolved high-order sub-cycle nonlinearities in a terahertz semiconductor laser. Light: Science & Applications, 10, 2531-2540 (2021). DOI: 10.1038/s41377-021-00685-5.
The exploitation of ultrafast electron dynamics in quantum cascade lasers (QCLs) holds enormous potential for intense
compact mode-locked terahertz (THz) sources
squeezed THz light
frequency mixers
and comb-based metrology systems. Yet the important sub-cycle dynamics have been notoriously difficult to access in operational THz QCLs. Here
we employ high-field THz pulses to perform the first ultrafast two-dimensional spectroscopy of a free-running THz QCL. Strong incoherent and coherent nonlinearities up to eight-wave mixing are detected below and above the laser threshold. These data not only reveal extremely short gain recovery times of 2 ps at the laser threshold
they also reflect the nonlinear polarization dynamics of the QCL laser transition for the first time
where we quantify the corresponding dephasing times between 0.9 and 1.5 ps with increasing bias currents. A density-matrix approach reproducing the emergence of all nonlinearities and their ultrafast evolution
simultaneously
allows us to map the coherently induced trajectory of the Bloch vector. The observed high-order multi-wave mixing nonlinearities benefit from resonant enhancement in the absence of absorption losses and bear potential for a number of future applications
ranging from efficient intracavity frequency conversion
mode proliferation to passive mode locking.
Dhillon, S. S. et al. The 2017 terahertz scienceand technology roadmap.J. Phys. D Appl. Phys.50, 043001 (2017)..
Kampfrath, T., Tanaka, K.&Nelson, K. A. Resonant and nonresonant control over matter and light by intense terahertz transients.Nat. Photonics7, 680–690 (2013)..
Makihara, T. et al. Ultrastrong magnon-magnon coupling dominated by antiresonant interactions.Nat. Commun.12, 3115 (2021)..
Vaswani, C. et al. Light quantum control of persisting Higgs modes in iron-based superconductors.Nat. Commun.12, 258 (2021)..
Tonouchi, M. Cutting-edge terahertz technology.Nat. Photonics1, 97–105 (2007)..
Matsunaga, R. et al. Light-induced collective pseudospin precession resonating with Higgs mode in a superconductor.Science345, 1145–1149 (2014)..
Jepsen, P. U., Cooke, D. G.&Koch, M. Terahertz spectroscopy and imaging—modern techniques and applications.Laser Photonics Rev.5, 124–166 (2011)..
Reimann, J. et al. Subcycle observation of lightwave-driven Dirac currents in a topological surface band.Nature562, 396–400 (2018)..
Schmid, C. P. et al. Tunable non-integer high-harmonic generation in a topological insulator.Nature593, 385–390 (2021)..
Peller, D. et al. Sub-cycle atomic-scale forces coherently control a single-molecule switch.Nature585, 58–62 (2021)..
Plankl, M. et al. Subcycle contact-free nanoscopy of ultrafast interlayer transport in atomically thin heterostructures.Nat. Photonics10, 594–600 (2021)..
Kuehn, W. et al. Two-dimensional terahertz correlation spectra of electronic excitations in semiconductor quantum wells.J. Phys. Chem. B115, 5448–5455 (2011)..
Zaks, B., Liu, R. B.&Sherwin, M. S. Experimental observation of electron-hole recollisions.Nature483, 580–583 (2012)..
Maag, T. et al. Coherent cyclotron motion beyond Kohn's theorem.Nat. Phys.12, 119–123 (2016)..
Lu, J. et al. Coherent two-dimensional terahertz magnetic resonance spectroscopy of collective spin waves.Phys. Rev. Lett.118, 207204 (2017)..
Hafez, H. A. et al. Extremely efficient terahertz high-harmonic generation in graphene by hot Dirac fermions.Nature561, 507–511 (2018)..
Yoshioka, K. et al. Real-space coherent manipulation of electrons in a single tunnel junction by single-cycle terahertz electric fields.Nat. Photonics10, 762–765 (2016)..
Klarskov, P. et al. Nanoscale laser terahertz emission microscopy.ACS Photonics4, 2676–2680 (2017)..
Hübers, H. W., Richter, H.&Wienold, M. High-resolution terahertz spectroscopy with quantum-cascade lasers.J. Appl. Phys.125, 151401 (2019)..
Pogna, E. A. A. et al. Unveiling the detection dynamics of semiconductor nanowire photodetectors by terahertz near-field nanoscopy.Light Sci. Appl.9, 189 (2021)..
Freeman, W. Decoherence in high barrier quantum cascade structures.J. Appl. Phys.122, 045701 (2017)..
Köhler, R. et al. Terahertz semiconductor-heterostructure laser.Nature417, 156–159 (2002)..
Kainz, M. A. et al. Thermoelectric-cooled terahertz quantum cascade lasers.Opt. Express27, 20688–20693 (2019)..
Khalatpour, A. et al. High-power portable terahertz laser systems.Nat. Photonics15, 16–20 (2021)..
Li, L. H. et al. Terahertz quantum cascade lasers with>1 W output powers.Electron. Lett.50, 309–311 (2014)..
Curwen, C. A., Reno, J. L.&Williams, B. S. Broadband continuous single-mode tuning of a short-cavity quantum-cascade VECSEL.Nat. Photonics13, 855–859 (2019)..
Burghoff, D. et al. Terahertz laser frequency combs.Nat. Photonics8, 462–467 (2014)..
Rösch, M. et al. Octave-spanning semiconductor laser.Nat. Photonics9, 42–47 (2015)..
Barbieri, S. et al. Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis.Nat. Photonics5, 306–313 (2011)..
Wang, F. H. et al. Short terahertz pulse generation from a dispersion compensated modelocked semiconductor laser.Laser Photonics Rev.11, 1700013 (2017)..
Hillbrand, J. et al. In-phase and anti-phase synchronization in a laser frequency comb.Phys. Rev. Lett.124, 023901 (2021)..
Eickemeyer, F. et al. Ultrafast coherent electron transport in semiconductor quantum cascade structures.Phys. Rev. Lett.89, 047402 (2002)..
Kröll, J. et al. Phase-resolved measurements of stimulated emission in a laser.Nature449, 698–701 (2007)..
Choi, H. et al. Femtosecond dynamics of resonant tunneling and superlattice relaxation in quantum cascade lasers.Appl. Phys. Lett.92, 122114 (2008)..
Choi, H. et al. Gain recovery dynamics and photon-driven transport in quantum cascade lasers.Phys. Rev. Lett.100, 167401 (2008)..
Kuehn, W. et al. Ultrafast phase-resolved pump-probe measurements on a quantum cascade laser.Appl. Phys. Lett.93, 151106 (2008)..
Friedli, P. et al. Four-wave mixing in a quantum cascade laser amplifier.Appl. Phys. Lett.102, 222104 (2013)..
Green, R. P. et al. Gain recovery dynamics of a terahertz quantum cascade laser.Phys. Rev. B80, 075303 (2009)..
Bacon, D. R. et al. Gain recovery time in a terahertz quantum cascade laser.Appl. Phys. Lett.108, 81104 (2016)..
Derntl, C. G. et al. Gain dynamics in a heterogeneous terahertz quantum cascade laser.Appl. Phys. Lett.113, 181102 (2018)..
Markmann, S. et al. Two-dimensional coherent spectroscopy of a THz quantum cascade laser: observation of multiple harmonics.Opt. Express25, 21753–21761 (2017)..
Markmann, S. et al. Two-dimensional spectroscopy on a THz quantum cascade structure.Nanophotonics10, 171–180 (2021)..
Luo, C. W. et al. Phase-resolved nonlinear response of a two-dimensional electron gas under femtosecond intersubband excitation.Phys. Rev. Lett.92, 047402 (2004)..
Worrall, C. et al. Continuous wave operation of a superlattic quantum cascade laser emitting at 2 THz.Opt. Express14, 171–181 (2006)..
Li, L. H. et al. The MBE growth and optimization of high performance terahertz frequency quantum cascade lasers.Opt. Express23, 2720–2729 (2015)..
Raab, J. et al. Ultrafast terahertz saturable absorbers using tailored intersubband polaritons.Nat. Commun.11, 4290 (2021)..
Mornhinweg, J. et al. Tailored subcycle nonlinearities of ultrastrong light-matter coupling.Phys. Rev. Lett.126, 177404 (2021)..
Tzenov, P. et al. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers.N. J. Phys.20, 053055 (2018)..
Wang, F. H. et al. Ultrafast response of harmonic modelocked THz lasers.Light Sci. Appl.9, 51 (2021)..
Jirauschek, C. Density matrix Monte Carlo modeling of quantum cascade lasers.J. Appl. Phys.122, 133105 (2017)..
0
浏览量
0
Downloads
0
CSCD
关联资源
相关文章
相关作者
相关机构